
Chapter 14

LEARNING OBJECTIVES
After studying this chapter,
you should:

• Be able to identify the sequence of
events that constitute the in-house
development phase of the SDLC.

• Be familiar with the tools used
to improve the success of system
construction and delivery activities,
including prototyping, CASE tools, and
the use of PERT and Gantt charts.

• Understand the distinction between
the structured and object-oriented
design approaches.

• Understand the use of multilevel DFDs
in the design of business processes.

• Be familiar with the different types of
system documentation and the pur-
poses they serve.

• Recognize the role of accountants in
the construct and delivery of systems.

• Understand the advantages and disad-
vantages of the commercial software
option and be able to discuss the
decision-making process used to select
commercial software.

T
his chapter covers the final three phases of the systems
development life cycle (SDLC). First we examine the
many activities associated with in-house development.
These activities fall conceptually into two categories:

(1) construct the system and (2) deliver the system. Through
these activities, systems selected in the project initiation phase
(discussed in Chapter 13) are designed in detail and imple-
mented. This involves creating input screen formats, output re-
port layouts, database structures, and application logic. Finally,
the completed system is tested, documented, and rolled out to
the user. The chapter then examines the increasingly important
option of using commercial software packages. The majority of
companies today, particularly smaller firms and large firms with
standardized information needs, employ prewritten software sys-
tems rather than develop in-house systems from scratch. Con-
ceptually the commercial software approach also consists of
construct and delivery activities. In this section we examine the
pros, cons, and issues involved in selecting off-the-shelf systems.

Finally, the chapter addresses the important activities asso-
ciated with systems maintenance. This stage in the SDLC carries
significant financial and operational risks that are of particular
importance to management, accountants, and auditors. A trend
in systems development, maintenance, and operation within
 organizations is to outsource part or all system activities. The
SDLC does not change in such a case, but its component parts
are provided by an outsourcing provider. Therefore, special con-
trols should be introduced to prevent increasing costs, decreasing
functionality of systems, and loss of strategic advantage.

Construct, Deliver, and Maintain
Systems Project*

* This chapter was co-authored by Jiri Polak, PhD, Deloitte & Touche, and Vojtech Merunka, PhD, Deloitte & Touche.

660 Chapter 14 Construct, Deliver, and Maintain Systems Project

In-House Systems Development
Organizations usually acquire information systems in two ways: (1) they develop cus-
tomized systems in-house through formal systems development activities and/or (2) they
purchase commercial systems from software vendors. Numerous commercial vendors
offer high-quality, general-purpose information systems. These vendors primarily serve
organizations with generic information needs. Typically, their client firms have business
practices so standardized that they can purchase predesigned information systems and
employ them with little or no modifications. However, many organizations require sys-
tems that are highly tuned to their unique operations. These firms design their own infor-
mation systems through in-house systems development activities.

While each approach has advantages and disadvantages, they are not mutually exclu-
sive options. A firm may satisfy some of its information systems needs by purchasing
commercial software and developing other systems in-house. This section is concerned
with the in-house systems development component of Figure 14-1.

Tools for Improving Systems Development
Systems development projects are not always success stories. In fact, by the time they
are implemented, some systems are obsolete or defective and must be replaced. Esti-
mates hold that up to 25 percent of all systems projects fail. That is, they are terminated
prematurely and never implemented, or they must be redesigned within six months of
 implementation. Historically, three problems that account for most systems failures have
plagued the SDLC.

1. Poorly specified systems requirements. Systems development is not a precise science.
The process involves human communications and the sharing of ideas between users
and systems professionals. This information exchange is often imperfect. Mistakes
are made in identifying problems and needs, new ideas emerge as the true nature of
the problem unfolds, and people simply change their minds about what they really
want and need from the system.

Because of this uncertainty, the SDLC tends not to be a smooth, linear process,
where one stage is completed before the next one begins. In reality, the process is
iterative or cyclical. For example, it is not uncommon for a systems designer to return
to the analysis stage from the construct stage to gather additional information as his
or her perception of the problem changes.

The cyclical nature of this process results in time-consuming false starts, much
 repeated work, and pressure from all fronts to get the job done. Too often, the result
is a system that is poorly designed, over budget, and behind schedule.

2. Ineffective development techniques. The problems cited above are amplified by inef-
fective techniques for presenting, documenting, and modifying systems specifications.
In the worst-case scenario, systems development tools are simply paper, pencils, rul-
ers, templates, and erasers. The use of computer-based graphics software that permits
original designs and changes to be made electronically considerably improves the sit-
uation. Nevertheless, days or even weeks of work may need to be redone because of a
change in a system’s specifications.

3. Lack of user involvement in systems development. The major cause of systems failure
is the lack of end-user involvement during critical development stages. At one time,
 computer systems development was thought to be the exclusive domain of the systems

Part IV Systems Development Activities 661

1. Systems Strategy
 –Assess Strategic
 Information Needs
 –Develop a Strategic
 Systems Plan
 –Create an Action Plan

High-Priority Proposals
Undergo Additional Study
and Development

2. Project Initiation
 –Systems Analysis
 –Conceptualization of
 Alternative Designs
 –Systems Evaluation
 and Selection

Selected System
Proposals Go Forward
for Detailed Design

5. Maintenance and Support

4. Commercial Packages
 –Trends in Commercial
 Packages
 –Choosing a Package

3. In-House Systems
 Development
 –Construct the System
 –Deliver the System

New and Revised
Systems Enter into
Production

Business Needs
and Strategy

Business
Requirements

Legacy
Situation

System Interfaces,
Architecture and
User Requirements

Feedback:
User Requests for
System Improvements
and Support

Feedback:
User Requests
for New System

FIGURE 14-1 System Development Life Cycle

professionals. During this period, users (including accountants) abdicated their tradi-
tional responsibility for systems design. Too often, this led to business problems because
system designs reflected the analyst’s perception of information needs rather than the
perception of accountants and other users. Systems often lacked adequate controls and
audit trails.

Today, we recognize that user involvement in a system’s development is the key to
its ultimate success. However, achieving competent user involvement is still difficult to
accomplish. There are two reasons for this: (1) users tend to become discouraged when
they discover the amount of time they must actually invest and (2) communication

662 Chapter 14 Construct, Deliver, and Maintain Systems Project

between end users and systems professionals is generally not fluent. It is often said that
these groups speak different languages. Each tends to resort to its own jargon when com-
municating with the other. Therefore, much time is spent identifying user problems and
needs and formulating acceptable solutions. Miscommunications between users and sys-
tems professionals lead to mistakes that, sometimes, are discovered too late.

These problems have led researchers to seek ways to improve the development pro-
cess. The focus of this effort has been on techniques to reduce development time, facilitate
better information transfer, encourage user involvement, and improve overall systems
quality. Several widely used techniques for improving systems development are reviewed
in the following section.

Prototyping
Prototyping is a technique for providing users a preliminary working version of the sys-
tem. The prototype is built quickly and inexpensively with the intention that it will be
modified. The objective of this technique is for the prototype to represent “an unambigu-
ous functional specification, serve as a vehicle for organizing and learning, and evolve
ultimately into a fully implemented” system.1 As the users work with the prototype and
make suggestions for changes, both they and the systems professional develop a better
understanding of the true requirements of the system.

Reducing its features to the essential elements keeps the costs of a prototype model
low. For example, the prototype system will not contain the complex code necessary to
perform transaction validation, exception-handling capabilities, and internal controls.
Typically, prototypes are limited to user input screens, output reports, and some principle
functions.

When incorporated in the front-end stages of the SDLC, prototyping is an effective
tool for establishing user requirements. Once these are obtained, the prototype is dis-
carded. This throwaway prototyping is used for developing structured applications, such
as accounting systems.2 An alternative technique continues the prototyping process until
the system is completed. This approach is used for developing decision support systems
and expert systems. Figure 14-2 illustrates the prototyping model.

Enhanced Version of Prototype

Discard Prototype
and Develop
System under
Traditional
SDLC Procedures

Obtain User
Feedback

Change
Prototype
per User
Feedback

Develop
Prototype

Present
Prototype to
Users

Develop
Prototype into
Finished
System

Identify
Conceptual
User
Specifications

FIGURE 14-2 Prototyping Techniques

1 J. C. Emery, Management Information Systems: The Critical Strategic Resource (New York: Oxford
University Press, 1987): 325.

2 V. Zwass, Management Information Systems (Dubuque, Iowa: Wm. C. Brown, 1992): 740.

Part IV Systems Development Activities 663

The CASE Approach
Computer-aided software engineering (CASE) technology involves the use of computer
systems to build computer systems. CASE tools are commercial software products con-
sisting of highly integrated applications that support a wide range of SDLC activities.
This methodology was developed to increase the productivity of systems professionals,
improve systems design quality, and expedite the SDLC.

Most CASE products comprise both upper and lower tools or applications. Upper CASE
tools support the conceptual activities of analysis and design. Lower CASE tools support the
physical activities associated with application programming and system maintenance. CASE
tools are used to define user requirements, create physical databases from conceptual ER dia-
grams, produce system design specifications, automatically generate computer program code,
and facilitate the maintenance of programs that both CASE and non-CASE techniques cre-
ate. Figure 14-3 illustrates the CASE spectrum of tools as they apply to various stages in the
SDLC. The appendix to this chapter presents more detailed discussion of CASE features.

PERT Chart
The project evaluation and review technique (PERT) is a tool for showing the relationship
among key activities that constitute the construct and delivery process. Figure 14-4 presents
a PERT chart for a hypothetical project. The principal features of this diagram are:

1. Activities—the tasks to be completed in the project. These are labeled (and lettered
A through L) on the lines, along with the time estimate for their completion. For
 example, the process design activity (C) is estimated to take four weeks.

2. Events—mark the completion of one activity and the beginning of the next. The
events in this diagram are numbered 1 through 9.

3. Paths—routes through the diagram that connect the events from the first to the last.

4. Critical path—the path with the greatest overall time. The critical path in this project
is C-F-G-J-L, with a total time of 20 (4 + 5 + 3 + 4 + 4) weeks. Any time delays in the
activities along this path will extend the overall project time, which is why this path
is critical.

Maintenance

New Systems Development

Front End,
Upper CASE
Tools

Back End,
Lower CASE
Tools

Systems Development Life Cycle

Systems
Planning

Systems
Analysis

Conceptual
Design

System
Selection

Detailed
Design

System
Implementation

Analysis Tools
Modeling
Tools

Maintenance
Tools

Design
Tools

Coding
Tools

FIGURE 14-3 CASE Spectrum of Support Tools for the SDLC

664 Chapter 14 Construct, Deliver, and Maintain Systems Project

Gantt Chart
The Gantt chart is a horizontal bar chart that presents time on a horizontal plane and
activities on a vertical plane. Figure 14-5 illustrates a Gantt chart for the same project
that the PERT chart represents in Figure 14-4. A bar marking its starting and ending dates
represents the time associated with each activity. The Gantt chart is popular because it
can show the current status of the project at a glance. By comparing projected time and
work completed to date, we can see which projects are on, ahead of, or behind schedule.

Construct the System
The main goal of the construct phase is to design and build working software that is ready to
be tested and delivered to its user community. This phase involves modeling the system, pro-
gramming the applications, and application testing. The design and programming of modern
systems follows one of two basic approaches: the structured approach and the object-oriented
approach. We begin this section with a review of these competing methodologies. We then
examine construct issues related to system design, programming, and testing.

The Structured Design Approach
The structured design approach is a disciplined way of designing systems from the top
down. It consists of starting with the big picture of the proposed system that is gradually
decomposed into more and more detail until it is fully understood. Under this approach
the business process under design is usually documented by data flow and structure dia-
grams. Figure 14-6 shows the use of these techniques to depict the top-down decomposi-
tion of a hypothetical business process.

C
 =

 4 W
eeks

D
esign P

rocess

G
 =

 3
 W

ee
ks

Te
st

 P
ro

gr
am

s

1

4

A = 3 Weeks
Purchase Equipment

B = 4 W
eeks

D
esign D

ata M
odel

F = 5 Weeks
Code Programs

D = 2 W
eeks

Install and Test

Equipment

6

Construct Phase

5

2

3
E = 5 Weeks

Create Data Structures

9

7

8

I = 3 Weeks
Convert Data Files

J = 4 W
eeks

Test System L
=

4
W

ee
ks

C
ut

 O
ve

r t
o

N
ew

Sys
te

m

K = 3 W
eeks

Train Personnel

H =
 3

 W
ee

ks

Pre
pa

re
 D

oc
um

en
ta

tio
n

Deliver Phase

FIGURE 14-4 PERT Chart for In-House Development Project

Part IV

System
s D

evelopm
ent A

ctivities
665

Purchase Equipment

Design Data Model

Design Process

Install and Test Equipment

Code Programs

Test Programs

Create Data Structures

Convert Data Files

Test System

Prepare Documentation

Train Personnel

Cut Over to New System

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
ur

re
nt

 P
oi

nt
 in

 T
im

e

Project Week
Budgeted

Actual

17 18 19 20 21

FIGURE 14-5 Gantt Chart

666 Chapter 14 Construct, Deliver, and Maintain Systems Project

We can see from these diagrams how the systems designer follows a top-down
approach. The designer starts with an abstract description of the system and, through
successive steps, redefines this view to produce a more detailed description. In our exam-
ple, Process 2.0 in the context diagram is decomposed into an intermediate-level data
flow diagram (DFD). Process 2.3 in the intermediate DFD is further decomposed into an
elementary DFD. This decomposition could involve several levels to obtain sufficient details.

Input Output

Data

1.0

Process

2.0

Process

Input

Data

2.1

Process

2.2

Process

Data

Output

2.3

Process

Input

Input

Data

2.3.1

Process

2.3.2

Process

Data

Output

2.3.3

Process

Program
Module 1

Module 2 Module 3 Module 4

Module 5 Module 6 Module 7 Module 8

Context-Level DFD

Intermediate-Level
DFD

Elementary-Level
DFD

Structure
Diagram

FIGURE 14-6 Top-Down Decomposition of the Structured Design Approach

Part IV Systems Development Activities 667

Let’s assume that three levels are sufficient in this case. The final step transforms Pro-
cess 2.3.3 into a structure diagram that defines the program modules that will constitute the
process.

The Object-Oriented Design Approach
The object-oriented design approach is to build information systems from reusable stan-
dard components or objects. This approach may be equated to the process of building an
automobile. Car manufacturers do not create each new model from scratch. New models
are actually built from standard components that also go into other models. For example,
each model of car that a particular manufacturer produces may use the same type of
engine, gearbox, alternator, rear axle, radio, and so on. Some of the car’s components
will be industry-standard products that other manufacturers use. Such things as wheels,
tires, spark plugs, and headlights fall into this category. In fact, it may be that the only
component actually created from scratch for a new car model is the body.

The automobile industry operates in this fashion to stay competitive. By using stan-
dard components, car manufacturers minimize production and maintenance costs. At
the same time, they can remain responsive to consumer demands for new products and
preserve manufacturing flexibility by mixing and matching components according to the
customer’s specification.

The concept of reusability is central to the object-oriented design approach to sys-
tems design. Once created, standard modules can be used in other systems with similar
needs. Ideally, the systems professionals of the organization will create a library (inven-
tory) of modules that other systems designers within the firm can use. The benefits of this
approach are similar to those stated for the automobile example. They include reduced
time and cost for development, maintenance, and testing and improved user support and
flexibility in the development process.

Elements of the Object-Oriented Design Approach
A distinctive characteristic of the object-oriented design approach is that both data and
programming logic, such as integrity tests, accounting rules, and updating procedures,
are encapsulated in modules to represent objects. The following discussion deals with the
principle elements of the object-oriented approach.

Objects. Objects are equivalent to nouns in the English language. For example, vendors,
customers, inventory, and accounts are all objects. These objects possess two character-
istics: attributes and methods. Attributes are the data that describe the objects. Methods
are the actions that are performed on or by objects that may change their attributes.
 Figure 14-7 illustrates these characteristics with a nonfinancial example. The object in
this example is an automobile whose attributes are make, model, year, engine size, mile-
age, and color. Methods that may be performed on this object include drive, park, lock,
and wash. Note that if we perform a drive method on the object, the mileage attribute
will be changed.

Figure 14-8 illustrates these points with an inventory accounting example. In this
example, the object is inventory and its attributes are part number, description, quantity
on hand, reorder point, order quantity, and supplier number. The methods that may be
performed on inventory are reduce inventory (from product sales), review available quan-
tity on hand, reorder inventory (when quantity on hand is less than the reorder point),
and replace inventory (from inventory receipts). Again, note that performing any of the
methods will change the attribute quantity on hand.

668 Chapter 14 Construct, Deliver, and Maintain Systems Project

Classes and Instances. An object class is a logical grouping of individual objects that
share the same attributes and methods. An instance is a single occurrence of an object
within a class. For example, Figure 14-9 shows the inventory class consisting of several
instances or specific inventory types.

Inheritance. Inheritance means that each object instance inherits the attributes and
methods of the class to which it belongs. For example, all instances within the inventory
class hierarchy share the attributes of part number, description, and quantity on hand.
These attributes would be defined once and only once for the inventory object. Thus,
the object instances of wheel bearing, water pump, and alternator will inherit these attri-
butes. Likewise, these instances will inherit the methods (reduce, review, reorder, and
replace) defined for the class.

Object classes can also inherit from other object classes. For example, Figure 14-10
shows an object hierarchy made up of an object class called control and three subclasses
called accounts payable, accounts receivable, and inventory. This diagramming technique
is an example of unified modeling language (UML). The object is represented as a rect-
angle with three levels: name, attributes, and methods.

Attributes

Object

Operations Drive Park Lock Wash

Car

Make Model Year Engine
Size

Mileage Color

FIGURE 14-7 Characteristics of Objects

Attributes

Object

Operations Reduce Review
Quantity

Reorder Replace

Inventory

Part
Number

Description Quantity
on Hand

Reorder
Point

Order
Quantity

Supplier
Number

FIGURE 14-8 Characteristics of an Inventory Object

Part IV Systems Development Activities 669

The three object subclasses have certain control methods in common. For example,
no account should be updated without first verifying the values Vendor Number, Cus-
tomer Number, or Part Number. This method (and others) may be specified for the con-
trol object (once and only once), and then all the subclass objects to which this method
applies inherit it.

Because object-oriented designs support the objective of reusability, portions of sys-
tems, or entire systems, can be created from modules that already exist. For example, any
future system that requires the attributes and methods that the existing control module
specifies can inherit them by being designated a subclass object.

Finally, the object-oriented approach offers the potential of increased security over
the structured model. Each object’s collection of methods, which creates an impenetrable
wall of code around the data, determines its functionality (behavior). This means that the
internal data of the object can be manipulated only by its methods. Direct access to the
object’s internal structure is not permitted.

System Design
The purpose of the design phase is to produce a detailed description of the proposed sys-
tem that both satisfies the system requirements identified during systems analysis and is in
accordance with the conceptual design. In this phase, all system components—user views,

Alternator

Object Class

Instance

Inventory

Wheel
Bearing

Water
Pump

FIGURE 14-9 Relationship between Object Class and Instance

Control

verifyKeyBeforeUpdate
. . .

ACCTS Rec

customerNumber
. . .

Inventory

partNumber
. . .

ACCTS Pay

vendorNumber
. . .

Object Name
Object Attributes

Object Methods

The thick arrows are used to depict inheritance
(supertype–subtype) relationships among object classes

FIGURE 14-10 Objects, Classes, and Inheritance

670 Chapter 14 Construct, Deliver, and Maintain Systems Project

database tables, processes, and controls—are meticulously specified. At the end of this
phase, these components are presented formally in a detailed design report. This report
constitutes a set of blueprints that specify input screen formats, output report layouts, data-
base structures, and process logic. These completed plans then proceed to the final phase in
the SDLC—system implementation—where the system is physically constructed.

The Design Sequence
The systems design phase of the SDLC follows a logical sequence of events: create a data
model of the business process, define conceptual user views, design the normalized data-
base tables, design the physical user views (output and input views), develop the process
modules, specify the system controls, and perform a system walk-through. In this section,
each of the design steps is examined in detail.

An Iterative Approach
Typically, the design sequence listed in the previous section is not a purely linear pro-
cess. Inevitably, system requirements change during the detailed design phase, causing
the designer to revisit previous steps. For example, a last-minute change in the process
design may influence data collection requirements that, in turn, changes the user view
and requires alterations to the database tables.

To deal with this material as concisely and clearly as possible, the detailed design
phase is presented here as a neat linear process. However, the reader should recognize
its circular nature. This characteristic has control implications for both accountants and
management. For example, a control issue that was previously resolved may need to be
revisited as a result of modifications to the design.

Data Modeling, Conceptual Views, and Normalized Tables
Data modeling is the task of formalizing the data requirements of the business process
as a conceptual model. The primary documentation instrument used for data modeling
is the entity relationship (ER) diagram. This technique is used to depict the entities or
data objects in the system. Once the entities have been represented in the data model, the
data attributes that define each entity can then be described. They should be determined
by careful analysis of user needs and may include both financial and nonfinancial data.
These attributes represent the conceptual user views that must be supported by normal-
ized database tables. To the extent that the data requirements of all users have been prop-
erly specified in the data model, the resulting databases will support multiple user views.
We described data modeling, defining user views, and designing normalized base tables in
Chapter 9 and its appendix.

Design Physical User Views
The physical views are the media for conveying and presenting data. These include output
reports, documents, and input screens. The remainder of this section deals with a number
of issues related to the design of physical user views. The discussion examines output and
input views separately.

Design Output Views
Output is the information the system produces to support user tasks and decisions.
Table 14-1 presents examples of output that several AIS subsystems produce. At
the transaction processing level, output tends to be extremely detailed. Revenue and

Part IV Systems Development Activities 671

expenditure cycle systems produce control reports for lower-level management and oper-
ational documents to support daily activities. Conversion cycle systems produce reports
for scheduling production, managing inventory, and cost management. These systems
also produce documents for controlling the manufacturing process.

The general ledger/financial reporting system (GL/FRS) and the management report-
ing system (MRS) produce output that is more summarized. The intended users of these

System Output

Expenditure cycle

Purchase orders

Cash disbursement voucher

Payment check

Purchases summary report

Cash disbursements summary

Revenue cycle

Sales invoice

Remittance advice

Bill of lading

Packing slip

Customer statements

Deposit slips

Cash receipts prelist

Sales summary

Cash receipts summary

Conversion cycle

Purchase requisitions

Work orders

Move tickets

Materials requisitions

Production schedules

Job tickets

Employee time cards

Work-in-process status reports

Summary of changes to finish goods

General ledger and financial reporting system

Financial statements

Comparative financial statements

Tax returns

Reports to regulatory agencies

Management reporting system

Various status and analysis reports

such as:

Inventory turnover reports

Inventory status reports

Vendor analysis reports

Budget and performance reports

TABLE 14-1 Examples of System Outputs

672 Chapter 14 Construct, Deliver, and Maintain Systems Project

systems are management, stockholders, and other interested parties outside the firm. The
GL/FRS is a nondiscretionary reporting system that produces formal reports required by
law. These include financial statements, tax returns, and other reports that regulatory
agencies demand. The output requirements of the GL/FRS tend to be predictable and
stable over time and between organizations.

The management reporting system serves the needs of internal management users.
MRS applications may be stand-alone systems, or they may be integrated in the revenue,
conversion, and expenditure cycles to produce output that contains both financial and
nonfinancial information. The MRS produces problem-specific reports that vary consid-
erably between business entities.

Output Attributes. Regardless of their physical form, whether operational documents,
financial statements, or discretionary reports, output views should possess the following
attributes: relevance, summarization, exceptions orientation, timeliness, accuracy, com-
pleteness, and conciseness.

Relevance. Each element of information output must support the user’s decision or task.
Irrelevant facts waste resources and detract attention from the information content of the
output. Output documents that contain unnecessary facts tend to be cluttered, take time
to process, cause bottlenecks, and promote errors.

Summarization. Reports should be summarized according to the level of the user in the
organization. The degree of summarization increases as information flows upward from
lower-level managers to top management. We see this characteristic clearly in the respon-
sibility reports represented in Figure 14-11.

Exception Orientation. Operations control reports should identify activities that are
about to go out of control and ignore those that are functioning within normal limits.
This allows managers to focus their attention on areas of greatest need. An example of

ABC Company
Manager Plant 2

Production Unit 1
Production Unit 2
Production Unit 3

Total

XXX
1,675
XXX

3,600

XXX
1,725
XXX

3,760

XXX
50

XXX

160

Budget Actual Variance

ABC Company
Manager Production Unit 2

Materials
Labor
Overhead

Total

XXX
XXX
XXX

1,675

XXX
XXX
XXX

1,725

XXX
XXX
XXX

50

Budget Actual Variance

ABC Company
VP Production

Plant #1
Plant #2
Plant #3

Total

XXX
3,600
XXX
XXX
XXX

12,690

XXX
3,760
XXX
XXX
XXX

13,120

XXX
160

XXX
XXX
XXX

430

Budget Actual Variance

Middle
Management

Operations
Management

Senior
Management

FIGURE 14-11 Responsibility Reports Showing Consolidation of Information

Part IV Systems Development Activities 673

this is illustrated with the inventory reorder report presented in Figure 14-12. Only the
items that need to be ordered are listed on the report.

Timeliness. Timely information that is reasonably accurate and complete is more valu-
able than perfect information that comes too late to be useful. Therefore, the system must
provide the user with information that is timely enough to support the desired action.

Accuracy. Information output must be free of material errors. A material error is one that
causes the user to take an incorrect action or to fail to take the correct action. Opera-
tional documents and low-level control reports usually require a high degree of accuracy.
However, for certain planning reports and reports that support rapid decision making,
the system designer may need to sacrifice accuracy to produce information that is timely.
Managers cannot always wait until they have all the facts before they must act. The
designer must seek a balance between the competing needs for accuracy and timeliness
when designing output reports.

Completeness. Information must be as complete as possible. Ideally, no piece of infor-
mation essential to the task or decision should be missing from the output. As with the
accuracy attribute, the designer must sometimes sacrifice completeness in favor of timely
information.

Conciseness. Information output should be presented as concisely as possible within the
report or document. Output should use coding schemes to represent complex data classi-
fications. Also, information should be clearly presented with titles for all values. Reports
should be visually pleasing and logically organized.

Sports Car Factory
Inventory Reorder Report

The following inventory items have fallen below normal levels:

12975

Date: 11/22/07

47782

6671

9981

Part

Exhaust Header

Wheel Bearing

Ball Joint

Description

2378

2378

2401

Primary
Vendor

10

500

200

Order
Quantity

2

25

10

Quantity
On Hand

1

20

20

Average
Daily
Usage

FIGURE 14-12 Inventory Reorder Report

674 Chapter 14 Construct, Deliver, and Maintain Systems Project

Output Reporting Techniques. While recognizing that differences in cognitive styles
exist among managers, systems designers must determine the output type and format
most useful to the user. Some managers prefer output that presents information in tables
and matrices. Others prefer information that is visually oriented in the form of graphs
and charts. The issue of whether the output should be hard copy (paper) or electronic
must also be addressed.

Despite predictions for two decades or more, we have not yet achieved a paper-
less society. On the contrary, trees continue to be harvested and paper mills continue
to be productive. In some firms, top management receives hundreds of pages of paper
output each day. Paper documents also continue to flow at lower organizational
levels.

On the other hand, many firms are moving to paperless audit trails and support daily
tasks with electronic documents. Insurance companies, law firms, and mortgage com-
panies make extensive use of electronic documents. The use of electronic output greatly
reduces or eliminates the problems associated with paper documents (purchasing, han-
dling, storage, and disposal). However, the use of electronic output has obvious implica-
tions for accounting and auditing.

The query- and report-generating features of modern database management systems
permit the manager to quickly create standard and customized output reports. Custom
reports can present information in different formats, including text, matrices, tables, and
graphs. Section 1 in the chapter appendix examines these formats and provides some
examples.

Design Input Views
Data input views are used to capture the relevant facts about the resources, events, and
agents involved in business process transactions. In this section, we divide input into two
classes: hard-copy input and electronic input.

Design Hard-Copy Input. Businesses today still make extensive use of paper input docu-
ments. In designing hard copy documents, the system designer must keep in mind several
aspects of the physical business process.

Handling. How will the document be handled? Will it be on the shop floor around grease
and oil? How many hands must it go through? Is it likely to get folded, creased, or torn?
Input forms are part of the audit trail and must be preserved in legible form. If they are to
be subjected to physical abuse, they must be made of high-quality paper.

Storage. How long will the form be stored? What is the storage environment? Length
of storage time and environmental conditions will influence the appearance of the form.
Data entered onto poor-quality paper may fade under extreme conditions. Again, this
may have audit trail implications. A related consideration is the need to protect the form
against erasures.

Numbers of Copies. Source documents are often created in multiple copies to trigger
multiple activities simultaneously and provide a basis for reconciliation. For example,
the system may require that individual copies of sales orders go to the warehouse, the
shipping department, billing, and accounts receivable. Manifold forms are often used
in such cases. A manifold form produces several carbon copies from a single writing.
The copies are normally color-coded to facilitate distribution to the correct users.

Part IV Systems Development Activities 675

Form Size. The average number of facts captured for each transaction affects the size of
the form. For example, if the average number of items received from the supplier for each
purchase is 20, the receiving report should be long enough to record them all. Otherwise,
additional copies will be needed, which will add to the clerical work, clog the system, and
promote processing errors.

Standard forms sizes are full-size, 8½ by 11 inches; and half-size, 8½ by 5½ inches.
Card form standards are 8 by 10 inches and 8 by 5 inches. The use of nonstandard forms
can cause handling and storage problems and should be avoided.

Form Design. Clerical errors and omissions can cause serious processing problems. Input
forms must be designed to be easy to use and collect the data as efficiently and effectively
as possible. This requires that forms be logically organized and visually comfortable to the
user. Two techniques used in well-designed forms are zones and embedded instructions.

Zones. Zones are areas on the form that contain related data. Figure 14-13 provides an
example of a form divided into zones. Each zone should be constructed of lines, captions,
or boxes that guide the user’s eye to avoid errors and omissions.

Embedded Instructions. Embedded instructions are contained within the body of the
form itself rather than on a separate sheet. It is important to place instructions directly
in the zone to which they pertain. If an instruction pertains to the entire form, it should
be placed at the top of the form. Instructions should be brief and unambiguous. As an
instructive technique, active voice is stronger, more efficient (needing fewer words), and
less ambiguous than passive voice. For example, the first instruction below is written in
passive voice. The second is in active voice.

1. This form should be completed in ink.

2. Complete this form in ink.

Notice the difference: the second sentence is stronger, shorter, and clearer than the first; it
is an instruction rather than a suggestion.

Design Electronic Input. Electronic input techniques fall into two basic types: input from
source documents and direct input. Figure 14-14 illustrates the difference in these tech-
niques. Input from source documents involves the collection of data on paper forms that
are then transcribed to electronic forms in a separate operation. Direct input procedures
capture data directly in electronic form, via terminals at the source of the transaction.

Input from Source Documents. Firms use paper source documents for a number of rea-
sons. Some firms prefer to maintain a paper audit trail that goes back to the source of
an economic event. Some companies capture data onto paper documents because direct
input procedures may be inconvenient or impossible. Other firms achieve economies of
scale by centralizing electronic data collection from paper documents.

An important aspect of this approach is to design input screens that visually reflect
the source document. The captions and data fields should be arranged on the electronic
form exactly as they are on the source document. This minimizes eye movement between
the source and the screen and maximizes throughput of work.

Direct Input. Direct data input requires that data collection technology be distributed to
the source of the transaction. A very common example of this is the point-of-sale terminal
in a department store.

676 Chapter 14 Construct, Deliver, and Maintain Systems Project

Document Title

Source Doc
Number

Organization Name and Address Control:
Date,
Reference #

Name, address of object (customer, vendor, product)

Body of report:

Units sold, units ordered, quantities, prices, etc.

Authorizations and
routing information

Totals,
shipping
charges, taxes

FIGURE 14-13 Zones of a Form

An advantage of direct input is the reduction of input errors that plague downstream
processing. By collecting data once, at the source, clerical errors are reduced since the
subsequent transcription step associated with paper documents is eliminated. The more
times a transaction is manually transcribed, the greater the potential for error.

Direct data collection uses intelligent forms for online editing that help the user
complete the form and make calculations automatically. The input screen is attached to

Part IV Systems Development Activities 677

a computer that performs logical checks on the data being entered. This reduces input
errors and improves the efficiency of the data collection procedures. During data entry,
the intelligent form will detect transcription errors, such as illegal characters in a field,
incorrect amounts, and invalid item numbers. A beep can be used to draw attention to an
error, an illegal action, or a screen message. Thus, corrections to input can be made on
the spot.

Given minimal input, an intelligent form can complete the input process automati-
cally. For example, a sales clerk need enter in the terminal only the item numbers and
quantities of products sold. The system will automatically provide the descriptions,
prices, price extensions, taxes, and freight charges and calculate the grand total. Many
time-consuming and error-prone activities are eliminated through this technique. Mod-
ern relational database packages have a screen painting feature that allows the user to
quickly and easily create intelligent input forms.

Data Entry Devices. A number of data entry devices are used to support direct electronic
input. These include point-of-sale terminals, magnetic ink character recognition devices,
optical character recognition devices, automatic teller machines, and voice recognition
devices.

Design the System Process
Now that the database tables and user views for the system have been designed, we are
ready to design the process component. This starts with the DFDs that were produced
in the general design phase. Depending on the extent of the activities performed in the
general design phase, the system may be specified at the context level or may be refined in

Transaction
File

Transaction
File

Data
Collection

Electronic
Input

File

Source
Document

Source
Document

Audit Trail

Audit Trail

Economic
Event

Input from Source Documents

Electronic
Input

Economic
Event

Direct Input

FIGURE 14-14 Input from Source Document and Direct Input

678 Chapter 14 Construct, Deliver, and Maintain Systems Project

lower-level DFDs. The first task is to decompose the existing DFDs to a degree of detail
that will serve as the basis for creating structure diagrams. The structure diagrams will
provide the blueprints for writing the actual program modules.

Decompose High-Level DFDs
To demonstrate the decomposition process, we will use the intermediate DFD of the
purchases and cash disbursements system illustrated in Figure 14-15. This DFD was
decomposed from the context-level DFD (Figure 13-6, Option A) originally prepared in
the conceptual design phase. We will concentrate on the accounts payable process num-
bered 1.4 in the diagram. This process is not yet sufficiently detailed to produce program
modules.

Figure 14-16 shows Process 1.4 decomposed into the next level of detail. Each of the
resulting subprocesses is numbered with a third-level designator, such as 1.4.1, 1.4.2,
1.4.3, and so on. We will assume that this level of DFD provides sufficient detail to pre-
pare a structure diagram of program modules. Many CASE tools will automatically con-
vert DFDs to structure diagrams. However, to illustrate the concept, we will go through
the process manually.

General
Ledger

AP Sub
Ledger

Vendor

Vendor
Records

Inventory
Records

Supporting
Docs

Voucher
Register

Check
Register

Receive
Goods

1.3

Update
General
Ledger

1.6

Order
Goods

1.2

Prepare
Payment

1.5

Authorize
Purchase

1.1

Process
AP

1.4

Purchase
Req

Purchase
Req

Rec Report

Payment Voucher Post

Post

File

Post

Post

Journal Voucher

Journal
Voucher

Purchase Order

In
vo

ice

Packing
Slip

Payment

FIGURE 14-15 DFD for Purchases and Cash Disbursements System

Part IV Systems Development Activities 679

Design Structure Diagrams
The creation of the structure diagram requires analysis of the DFD to divide its processes
into input, process, and output functions. Figure 14-17 presents a structure diagram
showing the program modules based on the DFD in Figure 14-16.

The Modular Approach
The modular approach presented in Figure 14-17 involves arranging the system in a hier-
archy of small, discrete modules, each of which performs a single task. Correctly designed
modules possess two attributes: (1) they are loosely coupled and (2) they have strong
cohesion. Coupling measures the degree of interaction between modules. Interaction is the
exchange of data between modules. A loosely coupled module is independent of the oth-
ers. Modules with a great deal of interaction are tightly coupled. Figure 14-18 shows the
relationship between modules in loosely coupled and tightly coupled designs.

Invoice
File

AP Sub
Ledger

Vendor

Open
PO File

PR
File

RR
File

Voucher
Register

Receive
Goods

1.3

Order
Goods

1.2

Authorize
Purchase

1.1

Receive
Rec Rept

1.4.3

Receive
PO

1.4.2

Receive
Purch
Req

1.4.1

Review and
Compare
Support
Documents

1.4.5

Prepare
Payment

1.5

Receive
Invoice

1.4.4

Update
General
Ledger

1.6

Prepare
Payment
Voucher

1.4.7

Update
AP

1.4.6

Purchase
Req

Purchase
Order

Rec
Rept

Invoice

Posting
Data

Post

Post

Approved Liabilities

Payment
Voucher

Journal Voucher

FIGURE 14-16 Lower-Level DFD for AP Process 1.4

680 Chapter 14 Construct, Deliver, and Maintain Systems Project

In the loosely coupled system, the process starts with Module A. This module controls
all the data flowing through the system. The other modules interact only with this mod-
ule to send and receive data. Module A then redirects the data to other modules.

Cohesion refers to the number of tasks a module performs. Strong cohesion means
that each module performs a single, well-defined task. Returning to Figure 14-17, Mod-
ule D gets receiving reports and only that. It does not compare reports to open purchase
orders, nor does it update accounts payable. Separate modules perform these tasks.

Modules that are loosely coupled and strongly cohesive are much easier to understand
and easier to maintain. Maintenance is an error-prone process, and it is not uncommon
for errors to be accidentally inserted into a module during maintenance. Thus, changing
a single module within a tightly coupled structure can have an impact on the other mod-
ules with which it interacts. Look again at the tightly coupled structure in Figure 14-18.

Accounts
Payable
Control

Process
Operations

Compare
Source Doc
Records

Authorize
Payment
Voucher

Update
AP Records

Output
Operations

Create
Payment
Voucher
Record

Get
Purchase
Req Record

Get PO
Record

Get
Rec Rept
Record

Get Invoice
Record

Input
Operations

B C D E
H I

F G

X Y Z

A

FIGURE 14-17 Structure Diagram for AP Process

DC E F

A

B

Loosely Coupled Modules

D

A

C E

B F

Tightly Coupled Modules

FIGURE 14-18 Loosely and Tightly Coupled Modules

Part IV Systems Development Activities 681

These interactions complicate maintenance by extending the process to the other mod-
ules. Similarly, modules with weak cohesion—those that perform several tasks—are more
complex and difficult to maintain.

Pseudocode the System Modules
Each module in Figure 14-17 represents a separate computer program. The higher-level
programs will communicate with lower-level programs through call commands. System
modules are coded in the implementation phase. When we get to that phase, we will
examine programming language options. At this point, the designer must specify the
functional characteristics of the modules through other techniques.

Next, we illustrate how pseudocode may be used to describe the function of Module
F in Figure 14-17. This module authorizes payment of accounts payable by validating the
supporting documents.

 COMPARE-DOCS (Module F)
 READ PR-RECORD FROM PR-FILE
 READ PO-RECORD FROM PO-FILE
 READ RR-RECORD FROM RR-FILE
 READ INVOICE-RECORD FROM INVOICE-FILE
 IF ITEM-NUM, QUANTITY-RECEIVED, TOTAL AMOUNT
 IS EQUAL FOR ALL RECORDS
 THEN PLACE “Y” IN AUTHORIZED FIELD OF PO-RECORD
 ELSE READ ANOTHER RECORD

The use of pseudocode for specifying module functions has two advantages. First,
the designer can express the detailed logic of the module, regardless of the programming
language to be used. Second, although the end user may lack programming skills, he or
she can be actively involved in this technical but crucial step.

Design System Controls
The last step in the design phase is the design of system controls. This includes computer pro-
cessing controls, database controls, manual controls over input to and output from the system,
as well as controls over the operational environment (for example, distributed data processing
controls). In practice, many controls that are specific to a type of technology or technique will,
at this point, have already been designed, along with the modules to which they relate. This
step in the design phase allows the design team to review, modify, and evaluate controls with a
systemwide perspective that did not exist when each module was being designed independently.
Because of the extensive nature of computer-based system controls, treatment of this aspect of
the systems design is deferred to Chapters 15, 16, and 17, where they can be covered in depth.

Perform a System Design Walk-Through
After completing the detailed design, the development team usually performs a system
design walk-through to ensure the design is free from conceptual errors that could become
programmed into the final system. Many firms have formal, structured walk-throughs
that a quality assurance group conducts. This is an independent group of programmers,
analysts, users, and internal auditors. The job of this group is to simulate the operation
of the system to uncover errors, omissions, and ambiguities in the design. Most system
errors emanate from poor designs rather than programming mistakes. Detecting and cor-
recting errors in the design thus reduces costly reprogramming later.

682 Chapter 14 Construct, Deliver, and Maintain Systems Project

Review System Documentation
The detailed design report documents and describes the system to this point. This report
includes:

Designs of all screen outputs, reports, and operational documents.

ER diagrams describing the data relations in the system.

Third normal form designs for database tables specifying all data elements.

An updated data dictionary describing each data element in the database.

Designs for all screen inputs and source documents for the system.

Context diagrams for the overall system.

Low-level data flow diagrams of specific system processes.

Structure diagrams for the program modules in the system, including a pseudocode
description of each module.

The quality control group scrutinizes these documents, and any errors are recorded
in a walk-through report. Depending on the extent of the system errors, the quality assur-
ance group will make a recommendation. The system design will be either accepted with-
out modification, accepted subject to modification of minor errors, or rejected because of
material errors.

At this point, a decision is made either to return the system for additional design or
to proceed to the next phase—systems implementation. Assuming the design goes for-
ward, the documents just mentioned constitute the blueprints that guide programmers
and system designers in constructing the physical system.

Program Application Software
The next stage of the in-house development is to select a programming language from
among the various languages available and suitable to the application. These include
procedural languages such as COBOL, event-driven languages such as Visual Basic, or
object-oriented programming (OOP) languages such as Java or C++. This section presents
a brief overview of various programming approaches. Systems professionals will make
their decision based on the in-house standards, architecture, and user needs.

Procedural Languages
A procedural language requires the programmer to specify the precise order in which
the program logic is executed. Procedural languages are often called third-generation
 languages (3GLs). Examples of 3GLs include COBOL, FORTRAN, C, and PL1. In busi-
ness (particularly in accounting) applications, COBOL was the dominant language for
years. COBOL has great capability for performing highly detailed operations on individ-
ual data records and handles large files efficiently. On the other hand, it is an extremely
wordy language that makes programming a time-consuming task. COBOL has survived
as a viable language because many of the legacy systems written in the 1970s and 1980s,
which were coded in COBOL, are still in operation today. Major retrofits and routine
maintenance to these systems need to be coded in COBOL. More than 12 billion lines of
COBOL code are executed daily in the United States.

Event-Driven Languages
Event-driven languages are no longer procedural. Under this model, the program’s code
is not executed in a predefined sequence. Instead, external actions or events that the user

•

•

•

•

•

•

•

•

Part IV Systems Development Activities 683

initiates dictate the control flow of the program. For example, when the user presses a
key or clicks on a computer icon on the screen, the program automatically executes code
associated with that event. This is a fundamental shift from the 3GL era. Now, instead of
designing applications that execute sequentially from top to bottom in accordance with
the way the programmer thinks they should function, the user is in control.

Microsoft’s Visual Basic is the most popular example of an event-driven language. The
syntax of the language is simple yet powerful. Visual Basic is used to create real-time and batch
applications that can manipulate flat files or relational databases. It has a screen-painting fea-
ture that greatly facilitates the creation of sophisticated graphical user interfaces (GUI).

Object-Oriented Languages
Central to achieving the benefits of this approach is developing software in an object-oriented
programming (OOP) language. The most popular true OOP languages are Java and Smalltalk.
However, the learning curve of OOP languages is steep. The time and cost of retooling for OOP
is the greatest impediment to the transition process. Most firms are not prepared to discard mil-
lions of lines of traditional COBOL code and retrain their programming staffs to implement
object-oriented systems. Therefore, a compromise, intended to ease this transition, has been the
development of hybrid languages, such as Object COBOL, Object Pascal, and C++.

Programming the System
Regardless of the programming language used, modern programs should follow a modu-
lar approach. This technique produces small programs that perform narrowly defined
tasks. The following three benefits are associated with modular programming.

Programming Efficiency. Modules can be coded and tested independently, which vastly
reduces programming time. A firm can assign several programmers to a single system.
Working in parallel, the programmers each design a few modules. These are then assem-
bled into the completed system.

Maintenance Efficiency. Small modules are easier to analyze and change, which reduces
the start-up time during program maintenance. Extensive changes can be parceled out to
several programmers simultaneously to shorten maintenance time.

Control. By keeping modules small, they are less likely to contain material errors of
fraudulent logic. Because each module is independent of the others, errors are contained
within the module.

Software Testing
Programs must be thoroughly tested before they are implemented. Program testing issues
of direct concern to accountants are discussed in this section.

Testing Individual Modules
Programmers should test completed modules independently before implementing them. This
usually involves the creation of test data. Depending on the nature of the application, this
could include test transaction files, test master files, or both. Figure 14-19 illustrates the test
data approach. We examine this and several other testing techniques in detail in Chapter 17.

Assume the module under test is the Update AP Records program (Module H) repre-
sented in Figure 14-17. The approach taken is to test the application thoroughly within
its range of functions. To do this, the programmer must create some test accounts payable

684 Chapter 14 Construct, Deliver, and Maintain Systems Project

master file records and test transactions. The transactions should contain a range of data
values adequate to test the logic of the application, including both good and bad data.
For example, the programmer may create a transaction with an incorrect account number
to see how the application handles such errors. The programmer will then compare the
amounts posted to accounts payable records to see if they tally with precalculated results.
Tests of all aspects of the logic are performed in this way, and the test results are used to
identify and correct errors in the logic of the module.

Deliver the System
The system is now ready to be implemented. In this phase, database structures are popu-
lated with data, equipment is purchased and installed, employees are trained, and the
system is documented. This phase concludes with the roll-out of the new system and the
termination of the old system.

The implementation process engages the efforts of designers, programmers, database
administrators, users, and accountants. All the steps in this stage warrant careful man-
agement. Nevertheless, not all steps are part of every system’s implementation, and not
all are of direct concern to accountants. For example, the implementation activities of
ordering equipment from vendors, preparing the site, installing equipment, and training
employees are not performed with each new system. Moreover, these are technical tasks
that do not usually involve the accounting function. This section focuses on those activi-
ties that have the greatest direct implications for accountants and auditors.

Testing the Entire System
When all modules have been coded and tested, they must be brought together and tested
as a whole. User personnel should direct systemwide testing as a prelude to the formal

Predetermined
Results Test

Master Files

Test Data

Programmer Prepares Test
Transactions, Test Master
Files, and Expected Results

Test ResultsAfter Test Run, Programmer
Compares Test Results with
Predetermined Results

Application
Being
Tested

Test DataTest Data

Test Transactions Input Sources

FIGURE 14-19 The Test Data Technique

Part IV Systems Development Activities 685

system cutover. The procedure involves using the system to process hypothetical data.
The outputs of the system are then reconciled with predetermined results, and the test is
documented to provide evidence of the system’s performance. Finally, when those con-
ducting the tests are satisfied with the results, a formal acceptance document should be
completed. This is an explicit acknowledgment by the user that the system in question
meets stated requirements. The user acceptance document becomes important in reconcil-
ing differences and assigning responsibility during the post-implementation review of the
system.

Saving Test Data
The preparation of test data is a tedious, time-consuming activity. The auditor should
save these data during system reviews for future use. By preserving the test data, we cre-
ate what is called a base case, which documents how the system performed at a point in
time. At any future point, the base case data should generate the same results. System
changes (maintenance) that have occurred since system implementation will explain the
differences between base case results and current test results. Hence, the base case pro-
vides a reference point for analyzing the effects of system changes and eases the burden of
creating test data.

Documenting the System
The system’s documentation describes how the system works. In this section, we consider
the documentation requirements of four groups: systems designers and programmers,
computer operators, end users, and accountants.

Designer and Programmer Documentation
Systems designers and programmers need documentation to debug errors and perform
maintenance on the system. This group is involved with the system on a highly techni-
cal level, which requires both general and detailed information. Some of this is provided
through DFDs, ER diagrams, and structure diagrams. In addition, system flowcharts,
program flowcharts, and listings of program code are important forms of documenta-
tion. The system flowchart shows the relationship of input files, programs, and output
files. However, it does not reveal the logic of individual programs that constitute the
system. The program flowchart provides a detailed description of the sequential and logi-
cal operation of the program. A separate program flowchart represents each program
in the system’s flowchart. From these, the programmer can visually review and evaluate
the program’s logic. The program code should itself be documented with comments that
describe each major program segment.

Operator Documentation
Computer operators use documentation describing how to run the system called a run
manual. The typical contents of a run manual include:

The name of the system, such as Purchases System.

The run schedule (daily, weekly, time of day, and so on).

Required hardware devices (tapes, disks, printers, or special hardware).

File requirements specifying all the transaction (input) files, master files, and output
files used in the system.

•

•

•

•

686 Chapter 14 Construct, Deliver, and Maintain Systems Project

Run-time instructions describing the error messages that may appear, actions to be taken,
and the name and telephone number of the programmer on call, should the system fail.

A list of users who receive the output from the run.

For security and control reasons, system flowcharts, logic flowcharts, and program code
listings are not part of the operator documentation. Operators should not have access to the
details of a system’s internal logic. We will discuss this point more fully in Chapter 15.

User Documentation
Users need documentation describing how to use the system. User tasks include such
things as entering input for transactions, making inquiries of account balances, updating
accounts, and generating output reports. The nature of user documentation will depend
on the user’s degree of sophistication with computers and technology. Thus, before
designing user documentation, the systems professional must assess and classify the user’s
skill level. The following is one classification scheme:

Novices

Occasional users

Frequent light users

Frequent power users

Novices have little or no experience with computers and may be embarrassed to ask
questions. Novices also know little about their assigned tasks. User training and docu-
mentation for novices must be extensive and detailed.

Occasional users once understood the system but have forgotten some essential com-
mands and procedures. They require less training and documentation than novices.

Frequent light users are familiar with limited aspects of the system. Although func-
tional, they tend not to explore beneath the surface and lack depth of knowledge. This
group knows only what it needs to know and requires training and documentation for
unfamiliar areas.

Frequent power users understand the existing system and will readily adapt to new
systems. They are intolerant of detailed instructions that waste their time. They like to
find shortcuts and use macro commands to improve performance. This group requires
only abbreviated documentation.

With these classes in mind, user documentation often takes the form of a user hand-
book, as well as online documentation. The typical user handbook will contain the fol-
lowing items:

An overview of the system and its major functions

Instructions for getting started

Descriptions of procedures with step-by-step visual references

Examples of input screens and instructions for entering data

A complete list of error message codes and descriptions

A reference manual of commands to run the system

A glossary of key terms

Service and support information

Online documentation will guide the user interactively in the use of the system. Some
commonly found online features include tutorials and help features.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Part IV Systems Development Activities 687

Tutorials. Online tutorials can be used to train the novice or the occasional user. The
success of this technique is based on the tutorial’s degree of realism. Tutorials should not
restrict the user from access to legitimate functions.

Help Features. Online help features range from simple to sophisticated. A simple help
feature may be nothing more than an error message displayed on the screen. The user
must walk through the screens in search of the solution to the problem. More sophisti-
cated help is context related. When the user makes an error, the system will send the mes-
sage, “Do you need help?” The help feature analyzes the context of what the user is doing
at the time of the error and provides help with that specific function (or command).

Accountant (Auditor) Documentation
With responsibility for the design of certain security procedures, accounting controls,
and audit trails, accountants are stakeholders in all AIS applications. For these tasks,
accountants may draw upon all of the documentation described previously. As internal
and external auditors, accountants also require document flowcharts of manual proce-
dures. We have encountered numerous examples of document flowcharts in the chap-
ters dealing with the revenue, expenditure, and conversion cycles. Document flowcharts
differ from DFDs in an important way. DFDs describe the overall logic of the system.
Document flowcharts show explicitly the flow of information between departments, the
departments in which tasks are actually performed, and the specific types and number of
documents that carry information. A physical view such as this is needed to understand
the segregation of duties, the adequacy of source documents, and the location of files
that support the audit trail. Document flowcharts are not always included as part of the
system’s documentation. When not provided, auditors must create their own during the
audit process.

Converting the Databases
Database conversion is a critical step in the implementation phase. This is the transfer of
data from its current form to the format or medium the new system requires. The degree
of conversion depends on the technology leap from the old system to the new one. Some
conversion activities are very labor-intensive, requiring data to be entered into new data-
bases manually. For example, the move from a manual system to a computer system will
require converting files from paper to magnetic disk or tape. In other situations, writing
special conversion programs may accomplish data transfer. A case in point is changing
the file structure of the databases from sequential direct access files. In any case, data
conversion is risky and must be carefully controlled. The following precautions should
be taken:

1. Validation. The old database must be validated before conversion. This requires ana-
lyzing each class of data to determine whether it should be reproduced in the new
database.

2. Reconciliation. After the conversion action, the new database must be reconciled
against the original. Sometimes this must be done manually, record by record and
field by field. In many instances, writing a program that will compare the two sets of
data can automate this process.

3. Backup. Copies of the original files must be kept as backup against discrepancies in
the converted data. If the current files are already in magnetic form, they can be conve-
niently backed up and stored. However, paper documents can create storage problems.

688 Chapter 14 Construct, Deliver, and Maintain Systems Project

When the user feels confident about the accuracy and completeness of the new data-
bases, the paper documents may be destroyed.

Converting to the New System
The process of converting from the old system to the new one is called the cutover. A system
cutover will usually follow one of three approaches: cold turkey, phased, or parallel operation.

Cold Turkey Cutover
Under the cold turkey cutover approach (also called the Big Bang approach), the firm
switches to the new system and simultaneously terminates the old system. When imple-
menting simple systems, this is often the easiest and least costly approach. With more
complex systems, it is the riskiest. Cold turkey cutover is akin to skydiving without a
reserve parachute. As long as the main parachute functions properly, there is no problem.
But things don’t always work the way they are supposed to. System errors that were not
detected during the walk-through and testing steps may materialize unexpectedly. With-
out a backup system, an organization can find itself in serious trouble.

Phased Cutover
Sometimes an entire system cannot, or need not, be cut over at once. The phased cutover
begins operating the new system in modules. For example, Figure 14-20 shows how we
might implement a system, starting with the sales subsystem, followed by the inventory
control subsystem, and finally the purchases subsystem.

By phasing in the new system in modules, we reduce the risk of a devastating sys-
tem failure. However, the phased approach can create incompatibilities between new
subsystems and yet-to-be-replaced old subsystems. Implementing special conversion
systems that provide temporary interfaces during the cutover period may alleviate this
problem.

Parallel Operation Cutover
Parallel operation cutover involves running the old system and the new system simultane-
ously for a period of time. Figure 14-21 illustrates this approach, which is the most time-
consuming and costly of the three. Running two systems in parallel essentially doubles

Phased Cutover Points

Time

Old Sales System

Old Inventory Control System

Old Purchases System

New Sales System

New Inventory Control System

New Purchases System

FIGURE 14-20 Phased Cutover

Part IV Systems Development Activities 689

resource consumption. During the cutover period, the two systems require twice the
source documents, twice the processing time, twice the databases, and twice the output
production.

The advantage of parallel cutover is the reduction in risk. By running two systems,
the user can reconcile outputs to identify and debug errors before running the new system
solo. Parallel operation should usually extend for one business cycle, such as one month.
This allows the user to reconcile the two outputs at the end of the cycle as a final test of
the system’s functionality.

Post-Implementation Review
The final step in the implementation phase actually takes place some months later in a
post-implementation review. The objective is to measure the success of the system and of
the process after the dust has settled. Although systems professionals strive to produce
systems that are on budget, on time, and meet user needs, this does not always happen.
The post-implementation review of the newly installed system can provide insight into
ways to improve the process for future systems. The areas discussed in the following sec-
tion are of particular concern.

System Design Adequacy
The physical features of the system should be reviewed to see if they meet user needs. The
reviewer should seek answers to the following types of questions:

 1. Does the output from the system possess such characteristics of information as rel-
evance, timeliness, completeness, accuracy, and so on?

 2. Is the output in the format most useful and desired by the user (such as tables, graphs,
electronic, hard copy, and so on)?

 3. Are the databases accurate, complete, and accessible?

 4. Did the conversion process lose, corrupt, or duplicate data?

 5. Are input forms and screens properly designed and meeting users’ needs?

 6. Are the users using the system properly?

Te
rm

in
a

te
 O

ld
 S

ys
te

m

Reconcile

Continue Running New System

Simultaneous
Operation Period

Output

Output

Old Sales Order System

New Sales Order System

FIGURE 14-21 Parallel Operation Cutover

690 Chapter 14 Construct, Deliver, and Maintain Systems Project

 7. Does the processing appear to be correct?

 8. Can all program modules be accessed and executed properly, or does the user ever
get stuck in a loop?

 9. Is user documentation accurate, complete, and easy to follow?

10. Does the system provide the user adequate help and tutorials?

Accuracy of Time, Cost, and Benefit Estimates
Uncertainty complicates the task of estimating time, costs, and benefits for a proposed
system. This is particularly true for large projects involving many activities and long time
frames. The more variables in the process, the greater the likelihood for material error
in the estimates. History is often the best teacher for decisions of this sort. Therefore,
a review of actual performance compared to budgeted amounts provides critical input
for future budgeting decisions. From such information, we can learn where mistakes
were made and how to avoid them the next time. The following questions provide some
insight:

1. Were PERT and Gantt chart estimates accurate to within 10 percent?

2. What were the areas of significant departures from budget?

3. Were departures from the budget controllable (internal) in the short run or noncon-
trollable (for example, supplier problems)?

4. Were estimates of the number of lines of program code accurate?

5. Was the degree of rework due to design and coding errors acceptable?

6. Were actual costs in line with budgeted costs?

7. Are users receiving the expected benefits from the system?

8. Do the benefits seem to have been fairly valued?

The Role of Accountants
The role of accountants in the construct and deliver phases of the SDLC should be signifi-
cant. Most system failures are due to poor designs and improper implementation. Being
a major stakeholder in all financial systems, accountants must apply their expertise in
this process to guide and shape the finished system. Specifically, accountants should get
involved in the following ways.

Provide Technical Expertise
The detailed design phase involves precise specifications of procedures, rules, and conven-
tions to be used in the system. In the case of an AIS, these specifications must comply with
GAAP, GAAS, SEC regulations, and IRS codes. Failure to so comply can lead to legal expo-
sure for the firm. For example, choosing the correct depreciation method or asset valuation
technique requires a technical background that systems professional don’t necessarily pos-
sess. The accountant must provide this expertise to the systems design process.

Specify Documentation Standards
In the implementation phase, the accountant plays a role in specifying system documen-
tation. Because financial systems must periodically be audited, they must be adequately
documented. The accountant must actively encourage adherence to effective documenta-
tion standards.

Part IV Systems Development Activities 691

Verify Control Adequacy
The applications that emerge from the SDLC must possess controls that are in accor-
dance with the provisions of Statement on Auditing Standards No. 78. This requires the
 accountant’s involvement at both the detailed design and implementation phases. Controls
may be programmed or manual procedures. Some controls are part of the daily opera-
tion of the system, while others are special actions that precede, follow, or oversee routine
processing. The extent of control techniques makes it impossible to treat them within this
chapter. Instead, we have devoted the next two chapters to the study of control concepts
and design.

Commercial Packages
Thus far we have examined system construction and delivery activities pertaining to
in-house development. Not all systems are acquired in this fashion; the trend today is
toward purchased software. Faced with many competing packages, each with unique
features and attributes, management must choose the system and the vendor that best
serves the needs of the organization. Making the optimal choice requires that this be an
informed decision.

Before moving on to the next phase of the SDLC, we will examine the issues sur-
rounding the purchase of commercial software. Our discussion will focus primarily on a
technique that can help structure and evaluate the many intangible factors that compli-
cate the process of selecting commercial software.

Trends in Commercial Packages
Four factors have stimulated the growth of the commercial software market: (1) the rela-
tively low cost of general commercial software as compared to customized software; (2) the
emergence of industry-specific vendors who target their software to the needs of particular
types of businesses; (3) a growing demand from businesses that are too small to afford an
in-house systems development staff; and (4) the trend toward downsizing of organizational
units and the resulting move toward the distributed data processing environment, which
has made the commercial software option more appealing to larger organizations. Indeed,
organizations that maintain their own in-house systems development staff will purchase
commercial software when the nature of their need permits. Commercial software can be
divided into a number of general groups, which are discussed in the following section.

Turnkey Systems
Turnkey systems are completely finished and tested systems that are ready for implemen-
tation. Often these are general-purpose systems or systems customized to a specific indus-
try. Turnkey systems are usually sold only as compiled program modules, and users have
limited ability to customize such systems to their specific needs. Some turnkey systems
have software options that allow the user to customize input, output, and some process-
ing through menu choices. Other turnkey system vendors will sell their customers the
source code if program changes are desired. For a fee, the user or the vendor can then
reprogram the original source code to customize the system. Some examples of turnkey
systems are described in the following section.

692 Chapter 14 Construct, Deliver, and Maintain Systems Project

General Accounting Systems. General accounting systems are designed to serve a wide
variety of user needs. By mass producing a standard system, the vendor is able to reduce
the unit cost of these systems to a fraction of in-house development costs. Powerful sys-
tems of this sort can be obtained for under $2,000.

To provide as much flexibility as possible, general accounting systems are designed in
modules. This allows users to purchase the modules that meet their specific needs. Typi-
cal modules include accounts payable, accounts receivable, payroll processing, inventory
control, general ledger, financial reporting, and fixed asset.

Special-Purpose Systems. Some software vendors have targeted their systems to selected
segments of the economy. For example, the medical field, the banking industry, and gov-
ernment agencies have unique accounting procedures, rules, and conventions that gen-
eral-purpose accounting systems do not always accommodate. Software vendors have
thus developed standardized systems to deal with industry-specific procedures.

Office Automation Systems. Office automation is the use of computer systems to improve
the productivity of office workers. Examples of office automation systems include word
processing packages, database management systems, spreadsheet programs, and desktop
publishing systems.

Backbone Systems
As we learned in Chapter 1, backbone systems provide a basic system structure on which
to build. Backbone systems come with all the primary processing modules programmed.
The vendor designs and programs the user interface to suit the client’s needs. This
approach can produce highly customized systems. But customizing a system is expensive
and time-consuming. Many vendors thus employ object-oriented systems design, which
takes advantage of reusable modules and thereby reduces the costs of tailoring the system
to the user.

Vendor-Supported Systems
Vendor-supported systems are hybrids of custom systems and commercial software.
Under this approach, the vendor develops (and maintains) custom systems for its clients.
The systems themselves are custom products, but the systems development service is com-
mercially provided. This option is popular in the health care and legal services industries.
Because the vendor serves as the organization’s in-house systems development staff, the
client organization must rely on the vendor to provide custom programming and on-site
maintenance of systems. Much of each client’s system may be developed from scratch,
but by using an object-oriented approach, vendors can produce common modules that
can be reused in other client systems. This approach helps to reduce development costs
charged to the client firms.

ERP Systems
Enterprise resource planning (ERP) systems are difficult to classify into a single category
because they have characteristics of all of the above. They are prewritten systems, which
in some cases are implemented as turnkey applications. On the other hand, they can
be modified to meet user needs. An ERP may be installed as a backbone system that
 interfaces with other legacy systems, or it may constitute an entirely new system. Because
of their complexity, ERP systems are most often vendor-supported packages that an out-
side service provider installs.

Part IV Systems Development Activities 693

Advantages of Commercial Packages

Implementation Time
Custom systems often take a long time to develop. Months or even years may pass before
a custom system can be developed through in-house procedures. Unless the organization
successfully anticipates future information needs and schedules application development
accordingly, it may experience long periods of unsatisfied need. On the other hand, small
commercial software systems can be implemented almost immediately upon recognizing
a need. The user does not need to wait. The implementation of a single module of larger
systems such as PeopleSoft, SAP, or ORACLE-FIN, however, could take from several
weeks to a few months. An entire ERP could take years, but this is still much quicker
than in-house or outsourced development would take.

Cost
A single user must wholly absorb in-house development costs. However, because the cost
of commercial software is spread across many users, the unit cost is reduced to a fraction
of the cost of a system developed in-house.

Reliability
Most reputable commercial software packages are thoroughly tested before their release
to the consumer market. Any system errors that were not discovered during testing that
organizations likely uncover shortly after release are corrected. Although no system is
certified as being free from errors, commercial software is less likely to have errors than
an equivalent in-house system.

Disadvantages of Commercial Packages

Independence
Purchasing a vendor-supported system makes the firm dependent on the vendor for main-
tenance. The user runs the risk that the vendor will cease to support the system or even go
out of business. This is perhaps the greatest disadvantage of vendor-supported systems.

The Need for Customized Systems
The prime advantage of in-house development is the ability to produce applications to
exact specifications. This advantage also describes a disadvantage of commercial soft-
ware. Sometimes, the user’s needs are unique and complex, and commercially available
software is either too general or too inflexible.

Maintenance
Business information systems undergo frequent changes. If the user’s needs change, it may
be difficult or even impossible to modify commercial software. On the other hand, in-house
development provides users with proprietary applications that can be maintained.

Choosing a Package
Having made the decision to purchase commercial software, the systems development
team is now faced with the task of choosing the package that best satisfies the organi-
zation’s needs. On the surface, there may appear to be no clear-cut best choice from

694 Chapter 14 Construct, Deliver, and Maintain Systems Project

the many options available. The following four-step procedure can help structure this
decision-making process by establishing decision criteria and identifying key differences
between options.

Step 1: Needs Analysis
As with in-house development, the commercial option begins with an analysis of user
needs. These are formally presented in a statement of systems requirements that provides
a basis for choosing between competing alternatives. For example, the stated requirement
of the new system may be to:

 1. Support the accounting and reporting requirements of federal, state, and local agencies.

 2. Provide access to information in a timely and efficient manner.

 3. Simultaneously support both accrual accounting and fund accounting systems.

 4. Increase transaction processing capacity.

 5. Reduce the cost of current operations.

 6. Improve user productivity.

 7. Reduce processing errors.

 8. Support batch and real-time processing.

 9. Provide automatic general ledger reconciliations.

10. Be expandable and flexible to accommodate growth and changes in future needs.

The systems requirements should be as detailed as the user’s technical background
permits. Detailed specifications enable users to narrow the search to only those packages
most likely to satisfy their needs. Although computer literacy is a distinct advantage in
this step, the technically inexperienced user can still compile a meaningful list of desirable
features that the system should possess. For example, the user should address such items
of importance as compliance with accounting conventions, special control and transac-
tion volume requirements, and so on.

Step 2: Send Out the Request for Proposals
Systems requirements are summarized in a document called a request for proposal (RFP)
that is sent to each prospective vendor. A letter of transmittal accompanies the RFP to
explain to the vendor the nature of the problem, the objectives of the system, and the
deadline for proposal submission.

The RFP provides a format for vendor responses and thus a comparative basis for
initial screening. Some vendors will choose not to respond to the RFP, while others will
propose packages that clearly do not meet the stated requirements. The reviewer should
attempt to select from these responses those proposals that are feasible alternatives.

Step 3: Gather Facts
In this next step in the selection process, the objective is to identify and capture rel-
evant facts about each vendor’s system. The following describes techniques for fact
gathering.

Vendor Presentations. At some point during the review, vendors should be invited to
make formal presentations of their systems at the user’s premises. This provides the prin-
ciple decision makers and users with an opportunity to observe the product firsthand.

Part IV Systems Development Activities 695

Technical demonstrations are usually given at these presentations using modified
versions of the packages that run on microcomputers. This provides an opportunity to
obtain answers to detailed questions. Sufficient time should therefore be allotted for an
in-depth demonstration followed by a question-and-answer period. If vendor representa-
tives are unable or unwilling to demonstrate the full range of system capabilities or to
deal with specific questions from the audience, this may indicate a functional deficiency
of the system.

Failure to gain satisfactory responses from vendor representatives may also be a sign
of their technical incompetence. The representatives either do not understand the user’s
problem or their own system and how it relates to the user’s situation. In either case, the
user has cause to question the vendor’s ability to deliver a quality product and to provide
adequate support.

Benchmark Problems. One often-used technique for measuring the relative performance
of competing systems is to establish a benchmark problem for them to solve. The bench-
mark problem could consist of important transactions or tasks that key components of
the system perform. In the benchmark example illustrated in Figure 14-22, both systems
are given the same data and processing task. The results of processing are compared on
criteria such as speed, accuracy, and efficiency in performing the task.

Vendor Support. For some organizations, vendor support is an important criterion in
systems selection. The desired level of support should be carefully considered. Organiza-
tions with competent in-house systems professionals may need less vendor support than
firms without such internal resources. Support can vary greatly from vendor to vendor.
Some vendors provide full-service support, including:

Client training

User and technical documentation

Warranties

•

•

•

Master File
Records

OutputOutput

Evaluate
Results

Transaction
Records

System BSystem A

Software
Being
Tested

Software
Being
Tested

FIGURE 14-22 Benchmark Approach to Testing Competing Software

696 Chapter 14 Construct, Deliver, and Maintain Systems Project

Maintenance programs to implement system enhancements

Toll-free help numbers

Annual seminars to obtain input from users and apprise them of the latest developments

At the other extreme, some vendors provide virtually no support. The buyer should
be wary of a promise of support that seems too good to be true, because it probably is.
The level of support the vendor provides can account for a large portion of its product’s
price. To avoid dump-and-run vendors, the buyer must be prepared to pay for support.

Contact User Groups. A vendor’s current user list is an important source of information.
The prospective user, not the vendor, should select a representative sample of users with
the latest version of the package and with similar computer configurations. A standard
set of questions directed to these users will provide information for comparing packages.
The following list is an example of the type of questions to ask:

When did you purchase the package?

Which other vendors did you review?

Why did you select this package?

Are you satisfied with the package?

Are you satisfied with the vendor support?

Does the system perform as advertised?

Were modifications required?

What type of training did the vendor provide?

What is the quality of the documentation?

Have any major problems been encountered?

Do you subscribe to the vendor’s maintenance program?

If so, do you receive enhancements?

To reiterate an important point, the prospective user, not the vendor, should select
the user references. This provides for a more objective appraisal and reduces the possibil-
ity of receiving biased information from showcase installations.

Step 4: Analyze the Findings and Make a Final Selection
The final step in the selection process is to analyze the facts and choose the best pack-
age. The principal problem is dealing with the many qualitative aspects of this decision.
A popular technique for structuring and analyzing qualitative variables is the weighted
factor matrix. The technique requires constructing a table similar to the one illustrated in
Table 14-2. This table shows a comparison between only two proposals, those of Ven-
dor A and Vendor B. In practice, the approach can be applied to all the vendors under
consideration.

The table presents the relevant decision criteria under the heading Factor. Each decision
factor is assigned a weight that implies its relative importance to the user. Two steps are
critical to this analysis technique: (1) identify all relevant decision factors and (2) assign
realistic weights to each factor. As these factors represent all of the relevant decision crite-
ria, their weights should total 100 percent. These weights will likely vary among decision
makers. One reviewer may consider vendor support an important factor and thus assign
a high numeric value to its weight. Another decision maker may give this a low weight
because support is not important in his or her firm, relative to other factors.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

After assigning weights, each vendor package is evaluated according to its perfor-
mance in each factor category. Based upon the facts gathered in the previous steps, each
individual factor is scored on a scale of 1 to 5, where 1 is poor performance and 5 is
excellent. The weighted scores are computed by multiplying the raw score by the weight
for each factor. Using the previous example, a weight of 15 for vendor support is multi-
plied by a score of 4 for Vendor A and 3 for Vendor B, yielding the weighted scores of 60
and 45, respectively.

The weighted scores are then totaled, and each vendor is assigned a composite score.
This is the vendor’s overall performance index. Table 14-2 shows a score for Vendor B
of 391 and 372 for Vendor A. This composite score suggests that Vendor B’s product is
rated slightly higher than Vendor A’s.

This analysis must be taken a step further to include financial considerations. For
example, assume Proposal A costs $150,000 and Proposal B costs $190,000. An overall
performance/cost index is computed as follows.

 Proposal A: 372 ________
 $150,000

 = 2.48 per $1,000

 Proposal B: 391 ________
 $190,000

 = 2.06 per $1,000

This means that Proposal A provides 2.48 units of performance per $1,000 versus
only 2.06 units per $1,000 from Proposal B. Therefore, Proposal A provides the greater
value for the cost.

The option with the highest performance/cost ratio is the more economically feasible
choice. Of course, this analysis rests on the user’s ability to identify all relevant decision
factors and assign to them weights that reflect their relative importance to the decision.
If any relevant factors are omitted or if their weights are misstated, the results of the
analysis will be misleading.

PROPOSAL A PROPOSAL B

Factor Weight
Raw
Score

Weighted
Score

Raw
Score

Weighted
Score

Response time 10 5 50 4 40

Compatibility 9 3 27 5 45

Reputation and

 experience 5 3 15 5 25

Ability to deliver on

 schedule 7 4 28 5 35

Range of capabilities 15 4 60 4 60

Modularity 12 4 48 3 36

User friendliness 15 4 60 3 45

Supports database 9 2 18 5 45

Supports networking 3 2 6 5 15

Vendor support 15 4 60 3 45

Total 100 372 391

TABLE 14-2 Weighted Factor Matrix

Part IV Systems Development Activities 697

Maintenance and Support
Maintenance involves both implementing the latest software versions of commercial
packages and making in-house modifications to existing systems to accommodate chang-
ing user needs. Maintenance may be relatively trivial, such as modifying an application to
produce a new report, or more extensive, such as programming new functionality into a
system.

Some organizations view systems maintenance services as commodity activities that
should be outsourced to third-party vendors on the low-cost bidder basis. The under-
lying justification for this is short-term economic benefit. By outsourcing maintenance
and support, management can channel financial resources into the organization’s core
competencies. Unfortunately, isolating maintenance activities from the organization also
disrupts the flow of system-related knowledge that may be of strategic importance to the
organization.

Some organizations take a strategic view of maintenance. Maintenance is an integral
part of the SDLC. Rather than representing the end of the line, it can be an incubator
for new ideas. If management captures the appropriate data, each currently running sys-
tem can be the prototype for the next version. To ensure success, the organization needs
to collect all relevant data from comments, requests, observed symptoms, and ideas for
improvement from the user community.

User Support
Typically, the first point of contact for such data transfer is through the user support
function. This includes help desk services, user training and education classes, and for-
mally documented user feedback pertaining to problems and system errors. To facilitate
data gathering and analysis, knowledge management systems are effective maintenance
tools.

Knowledge Management and Group Memory
Knowledge management is a concept consisting of four basic processes: gathering, orga-
nizing, refining, and disseminating. Gathering brings data into the system. Organizing
associates data items with subjects, giving them context. Refining adds value by discov-
ering relationships between data, performing synthesis, and abstracting. Disseminating
gets knowledge to the recipients in a usable form. The most difficult of these processes to
automate is refining.

A knowledge management system can be used to create a group memory, which
makes an organization more effective, just as human beings become more effective and
mature with the accumulation of thoughts and memories. From a technology viewpoint,
a knowledge management system is a database-oriented software tool that allows users,
developers, and the operations community to contribute to the group memory. Contribu-
tors add their comments, suggestions, or complaints about a system or process into forms
from their desktop PCs. The knowledge management software uses a parsing utility that
takes incoming strings of data and infers relationships from them. A notable strength
of the system is that it can deal with both historical and emerging data. The goal of the
system is not simply to store information in a central repository for record keeping or
archival recall. Rather, it analyzes the heterogeneous data and disseminates information
to users and systems management. Group memory is thus a potentially valuable input to
the organization’s evolving systems strategy.

698 Chapter 14 Construct, Deliver, and Maintain Systems Project

FIGURE 14-23 CASE Spectrum of Support Tools for the SDLC

Maintenance

New Systems Development

Front End,
Upper CASE
Tools

Back End,
Lower CASE
Tools

Systems Development Life Cycle

Systems
Planning

Systems
Analysis

Conceptual
Design

System
Selection

Detailed
Design

System
Implementation

Analysis Tools Modeling
Tools

Maintenance
Tools

Design
Tools

Coding
Tools

Part IV Systems Development Activities 699

Summary
The chapter dealt with the construction and delivery of information systems. The first section presented
topics and issues related to in-house development. This began with a review of techniques used for improv-
ing systems construction, including prototyping, CASE technology, PERT charts, and Gantt charts.

Next, we discussed two design approaches: the structured approach and the object-oriented approach.
The discussion followed a design sequence that dealt with system components in the following order:
create a data model of the business process, define conceptual user views, design the normalized data-
base tables, design the physical user views (output and input views), develop the process modules, specify
the system controls, and perform a system walk-through. The delivery stage involves populating data-
base structures, purchasing and installing equipment, employee training, and system documentation. This
phase concludes with the roll-out of the new system and the termination of the old system. The section
concluded with a discussion of the accountant’s role in in-house development.

We next examined issues related to commercial software, an option that businesses are increasingly
using. After briefly identifying the pros and cons of commercial software, we examined a four-step proce-
dure that can be employed in the selection of commercial software packages. The chapter concluded with
a brief discussion of the strategic role of system maintenance and the importance of group memory as a
key input to systems strategy.

Appendix

Case Tools
Figure 14-23 presents the CASE spectrum of support in relation to the relevant stages of the SDLC. CASE
tools are used to define user requirements, create physical databases from conceptual user views, produce
systems design specifications, automatically generate computer program code, and facilitate the mainte-
nance of programs that both CASE and non-CASE tools create. Figure 14-24 presents an overview dia-
gram of a comprehensive CASE system. The sections below follow the main points of this diagram.

60893_14_Ch14_p659-p722.indd Sec1:699 11/1/07 11:38:38 PM

Central Repository
The heart of the CASE system is the central repository. Essentially, this is a database of attributes,
relations, and elements that describe all the applications created under the CASE system. These items
include:

1. Definitions of all databases.

2. Systems documentation, such as context diagrams, data flow diagrams, and structure charts.

3. The program code.

4. Reusable program modules.

5. User prototype screens.

The central repository system helps to integrate the activities of system designers working on the same
project or on separate but related projects. For example, if the size or the name of a data attribute must be
changed, then all the applications that use that attribute must also be changed. In a moderate-sized firm,
this could involve hundreds of programs. Normally, this would require many days of manual searching
to identify the affected programs. However, the central repository system can quickly identify and list the
applications that use the attribute being changed. Another example of the integration of activities is the
ability to reuse program code. Different applications may use the same routines. These routines can be
created, tested, and then used many times. The central repository stores reusable modules for immediate
implementation in other systems. This reduces the overall development time of subsequent applications.

700 Chapter 14 Construct, Deliver, and Maintain Systems Project

FIGURE 14-24 Overview of CASE System

Maintenance
Model

Coding
Model

Design
Model

Prototype
Model

DFD
Model

Central
Repository

CASE
System

Context
DFD

Intermediate
DFD

Elementary
DFD

Prototype
Screens

Structure
Diagrams

Program
Code

Database
Structures

CASE OutputsUpper CASE Models Lower CASE Models

User Workstations

60893_14_Ch14_p659-p722.indd Sec1:700 11/1/07 11:38:39 PM

CASE Models
CASE products employ several functional models that can be used to support activities in different phases
of the SDLC. The following models are representative.

The Data Flow Diagram Model. We introduced the data flow diagram in Chapter 2. This section presents
a more extensive use of this documentation technique. The DFD uses a set of symbols to represent the pro-
cesses, data sources, data flows, and process sequences of a current or proposed system.

As a systems design tool, DFDs are used to represent multiple levels of detail. From the most general
to the most detailed, these are the context level, the intermediate level, and the elementary level.

The Context-Level DFD. The analyst can use the context-level DFD to present an overview model of
the business activities and the primary transactions that the system processes. Figure 14-25 presents an
example of a context diagram of the revenue cycle for a company. The context diagram is a very high-level
representation of the system. It does not include a detailed definition of data files and specific procedures.
The focus is on the overall relationship between the entities (data, sources of data, and processes) in the
system. This relationship is represented by symbols, lines, and arrows that show the direction of the data
flows.

The Intermediate-Level DFD. The next step is to explode the context-level DFD into one or more inter-
mediate-level DFDs, as illustrated in Figure 14-26. Notice how Process 1.0 in Figure 14-25 is decomposed
into the following subprocesses.

 1.1 Sales Approval

 1.2 Ship Goods

 1.3 Bill Customer

 1.4 Update Accounts Receivable

Several levels of intermediate DFDs may be needed to present enough detail for the systems professional
and user to fully understand the system. In this example, we show only one intermediate level.

The Elementary-Level DFD. Figure 14-27 presents the elementary-level DFD for Process 1.3 in Figure
14-26. An elementary-level DFD provides a clear and precise definition of all elements of a portion of the

FIGURE 14-25 Context-Level Data Flow Diagram for the Revenue Cycle

Customer Accounting
Records

Sales
Order
Processing

1.0

2.0

Cash
Receipts
Processing

Sales Order

Customer Bill
Update

Upd
ate

Cash

Part IV Systems Development Activities 701

60893_14_Ch14_p659-p722.indd Sec1:701 11/1/07 11:38:39 PM

702 Chapter 14 Construct, Deliver, and Maintain Systems Project

system. In this example, Process 1.3 (bill customer) is explained in detail. Other elementary-level DFDs
will be required for Processes 1.1, 1.2, and 1.4.

The preparation of DFDs in a non-CASE environment can be time-consuming for the analyst. Because
of inevitable changes in specifications during the system’s development, the analyst may produce many
versions of the DFD documents before arriving at the final product. The graphics capability of CASE
tools greatly expedites this task by providing functions for labeling, modifying, and rearranging the DFD.
However, the CASE DFD is more than simply a graphic representation of the system. The elementary-level
DFD is the physical input to lower CASE models that automatically produce program code and database
tables. Any and all changes to the system during its development and maintenance are thus made directly
through the DFD.

The Prototype Model. The prototype model supports the prototyping concept presented earlier. This is a
powerful feature that helps ensure that user requirements are being met. Systems professionals can imme-
diately provide users with input screens and report formats. The user can thus visualize certain features
of the system before it is actually designed and evaluate the proposed system. Any changes can be imple-
mented before the system is designed and at virtually no cost to the project schedule.

FIGURE 14-26 Intermediate-Level Data Flow Diagram for Sales Order Processing System

Customer Carrier

Credit
Records

Pricing
Data

Customer
AR Records

Sales
Approval

1.1

Bill
Customer

1.3

Ship
Goods

1.2

Update
Accounts
Receivable

1.4

Sales Order

A
pp

ro
ve

d
S

al
es

 O
rd

er
Packing Slip

Ship
pin

g N
oti

ce

Posting Data

Shipping
Documents

Customer Bill

Post

60893_14_Ch14_p659-p722.indd Sec1:702 11/1/07 11:38:39 PM

Part IV Systems Development Activities 703

The Design Model. The logic of the design model is based on the concept of system decomposition, which
was introduced in Chapter 1. Recall that any system can be decomposed from the top down into smaller
and smaller subsystems, each with a specific function. The design model takes the elementary-level DFD
as input and produces from this a structure diagram. The DFD is a model of the conceptual system, and
the structure diagram is a model of the program code that constitutes the physical system. Figure 14-28
shows a structure diagram for the elementary-level DFD in Figure 14-27. The structure diagram shows the
overall relationship between the modules that constitute the system. Each of these modules represents a
separate program that must be coded, unless it already exists as a reusable program module. We examine
the issue of reusable modules later in the chapter.

FIGURE 14-27 Elementary-Level Data Flow Diagram for the Billing Process

General
Ledger
System

Journal Voucher

Customer

Sales Order
Pending File

Sales
Journal

Pricing
Data

C
om

pl
et

ed
In

vo
ic

e

C
us

to
m

er
 B

ill

Completed
Invoice

Sales
Approval

1.1

Prepare
Invoice

1.3.2

Record in
Journal

1.3.3

Review
and Bill
Customer

1.3.4

Receive
Approved
Sales
Order

1.3.1

Update
Accounts
Receivable

1.4

Approved
Sales Order

Sh
ipp

ing
 N

ot
ice

Posting Data

Prepare
Journal
Voucher

1.3.5

Posting Copy

Ship
Goods

1.2

60893_14_Ch14_p659-p722.indd Sec1:703 11/1/07 11:38:40 PM

704 Chapter 14 Construct, Deliver, and Maintain Systems Project

Many CASE tools document the details of each module in the form of pseudocode or structured English.
Pseudocode explains what the module is supposed to do, regardless of the programming language used.

The Coding Model. One of the great labor-saving advantages of CASE is its facility for transforming
the structure diagram into computer modules. Many top-end CASE tools produce program source code,
such as COBOL, C, and C++. These source programs must then be compiled (translated) into executable
machine code modules.

Some CASE tools convert the structure diagrams directly to machine code and eliminate the source-
code stage. The reason for this is to preserve the integrity between the conceptual system model (the DFD)
and the physical system (the program). Sometimes during maintenance or original development, systems
specialists are tempted to make design changes directly to the source code. If these changes are not also
made to the DFDs and structure diagrams that specify the system, there will be a discrepancy between
documentation that describes what the program does and the actual program. By eliminating the source
code, the systems professional is forced to make all systems changes via the DFDs. The CASE tool will
then modify the structure diagrams and rewrite the computer (machine-level) code automatically. This
ensures that the system’s description is always consistent with the program code.

The nonsource code approach has two implications for accountants, auditors, and management. The
first is a potential control issue. The program source code is part of the system documentation. To prop-
erly design their test procedures, auditors sometimes need to review the source code. If it is not available,
this may hamper testing and force the auditor to employ alternative, less efficient, and more costly pro-
cedures. Second, the nonsource code approach can have the effect of committing the firm to a particular
CASE tool and vendor. By creating source code as a by-product of the development process, the applica-
tion remains independent of the CASE system. Should the firm’s management decide to switch to another
vendor, current applications can still be maintained. Most CASE tools will accept source programs written
in standard source code.

The Maintenance Model. Eighty to 90 percent of the total cost of a system is expended during the main-
tenance phase of the SDLC. This is often referred to as the iceberg effect. Figure 14-29 illustrates this
phenomenon. All systems must be maintained throughout their lives, and some iceberg effect is inevi-
table. However, poorly designed systems can significantly contribute to the problem. To make a change
to a computer program in a non-CASE environment, the maintenance programmer must first thoroughly

FIGURE 14-28 Structure Diagram for Elementary-Level DFD of the Billing Process in Figure 14-27

Update
Accounting
Records

Prepare
Customer
Invoice

Get
Shipping
Notice

Post to
General
Ledger

Prepare
Journal
Voucher

Record in
Journal

Get
Approved
Sales Order

Get
Pricing
Data

Billing Process
Control Program

60893_14_Ch14_p659-p722.indd Sec1:704 11/1/07 11:38:40 PM

Part IV Systems Development Activities 705

review the program code in an attempt to understand the original programmer’s logic. This review often
requires a great deal of time and is protracted by awkward, inefficient, and redundant program logic.
Even companies that use CASE tools will have some badly designed systems. Often these systems are old
and precede CASE usage.

The CASE maintenance model facilitates program maintenance and greatly reduces the iceberg effect.
Applications originally developed under CASE are relatively easy to maintain. The maintenance program-
mer reviews the documentation for the application and makes the required changes, at the conceptual
level, to the DFDs. The CASE system then makes the changes to the structure diagrams and program code
automatically. Finally, the programmer thoroughly tests and installs the modified application.

CASE tools can also be used to maintain applications that were not originally developed under the
CASE system. The CASE maintenance model provides two such tools for this purpose: reverse engineer-
ing and reengineering. Reverse engineering extracts from the source code meaningful design specifications
that the maintenance programmer can use to understand the application logic. Reengineering restructures
and documents the old source code logic to conform to CASE standards. This includes preparing DFDs
and structure diagrams. Thus, future maintenance of the system can proceed as if the application were
originally created under CASE.

Advantages of CASE
The following is a list of the commonly cited advantages of the CASE approach.

1. Reduced system complexity. CASE systems are more easily comprehended than traditional methods
and support structured logic concepts.

2. Increased flexibility. The systems development process does not usually proceed in a purely linear
fashion in which each stage is totally complete before the next one begins. Rather, it tends to be a
cyclical process. It will be necessary to return to a previous stage if proceeding to the next stage will
result in a flawed design or an improper implementation. As the details of the problem unfold in
the downstream stages, it may be necessary to reconsider and revise upstream models. Compared to
manual techniques, CASE provides a great deal of flexibility to the analyst in making such revisions.

FIGURE 14-29 The Iceberg Effect

New Systems
Development Costs

Maintenance
Costs

60893_14_Ch14_p659-p722.indd Sec1:705 11/1/07 11:38:40 PM

706 Chapter 14 Construct, Deliver, and Maintain Systems Project

3. Capacity to review alternative designs. Because CASE systems can be rapidly produced and changed,
users and systems specialists can review prototypes of many alternative designs before committing to a
particular system.

4. Quicker development process. The development process under CASE is three to six times faster than
traditional methods, depending on the complexity of the system and the degree of CASE expertise
within the firm.

5. Promotion of user involvement. Through its prototyping features, CASE has great potential for improving
user involvement in the development process. We discuss this point in more detail in the following section.

6. Reusable program code and documentation. The central repository feature allows CASE systems to
share common program modules and documentation.

7. Reduced maintenance cost. By maintaining the system at the conceptual level, maintenance time and
programming errors are reduced. This translates into a more efficient process that responds more
quickly to user needs. The iceberg effect is reduced by as much as 50 percent.

Disadvantages of CASE
In spite of these many virtues, CASE is not without its disadvantages, including:

1. Product cost. The cost of a CASE system is proportional to its features and sophistication. Microcom-
puter CASE tools with limited features may be obtained for hundreds of dollars. Fully equipped CASE
tools for a mainframe environment can cost hundreds of thousands of dollars.

2. Start-up time and cost. Developing a pool of CASE expertise within the organization takes time. Sys-
tems professionals must be trained, and the learning curve for sophisticated CASE systems is steep.

3. Incompatible CASE tools. The hundreds of CASE products on the market are often incompatible with
one another. This limits a firm’s choices when selecting CASE tools and tends to tie the firm to a single
product and vendor.

4. Program inefficiency. The source code that CASE tools produce is not as efficient as code written by a
skilled programmer. To improve program efficiency, programmers often modify the CASE-generated
modules. This practice can produce discrepancies between the DFD system logic and the program logic.

Output Reporting Alternatives
This section presents various output design alternatives, along with a number of example output reports.

Tables and Matrices
Tables and matrices can be used to summarize large amounts of information. A table is a report arranged
in columns and rows, such as the supplier analysis report in Figure 14-30. This table shows columns of
evaluation data for suppliers with whom the firm does business. This is an effective means for comparing
and contrasting relevant facts.

A matrix is a rectangular arrangement of data into rows and columns. Each element (the intersection
of a row and a column) is a data value. This form of report is particularly useful for presenting binary state
relations—the presence or absence of a state—among elements. Figure 14-31 is a matrix report showing
which vendors supply which major inventory items.

Graphs and Charts
Graphs and charts present numeric data as geometric shapes. This visual approach to reporting presumes
that a picture is worth a thousand words. Certainly this is true when conveying such summarized messages
as the big picture and trends over time and comparing the performance of multiple products. For these
purposes, visual reports are far more effective than numeric reports alone. In this section, we examine five
visual reporting techniques: line graph, scatter graph, bar graph, pie chart, and layer chart.

60893_14_Ch14_p659-p722.indd Sec1:706 11/1/07 11:38:40 PM

Part IV Systems Development Activities 707

Line Graph. The simple line graph is used to show the fluctuations in an item of interest over time. Figure 14-32
illustrates this approach. We can use different colors and different-shaped lines to track multiple items. In
Figure 14-32, the solid line is projected sales and the dashed line is actual sales. The increments of the scale
(sales dollars) should be small enough to detect material fluctuations. However, in using line graphs, we must
guard against using a scale that is too small, because it might portray an exaggerated picture to the user.

Scatter Graph. The purpose of a scatter graph is to reveal relationships among underlying data. To illus-
trate, Figure 14-33 superimposes a line graph and scatter graph. The line graph shows only the movement
from Point A to Point B in the form of a trend line that takes the average path through the data. In some
instances, this could result in the loss of important information to the user. The points in the scatter graph
show the degree of dispersion associated with the underlying activity.

Bar Graph. The purpose of a bar graph is to show the relationship of total quantities or proportions.
Figure 14-34 uses a vertical bar graph to show the relationship over time between actual computer usage
for a firm and budgeted usage.

The height of the bars represents the total amount of computer usage. If we were to plot the top points
of each bar, we could construct a line graph showing the trend in usage and the relationship between
actual and budgeted usage. However, the emphasis of a bar graph is on total amounts at specific points
rather than on trends.

The horizontal bar graph is used to compare multiple items in the same time frame. For example,
Figure 14-35 compares output from four production plants for the month of January.

Pie Chart. A pie chart presents the proportional relationship of different items to the whole. For example,
Figure 14-36 shows the proportions of several items that together constitute total manufacturing cost.
We can differentiate the segments by using color or by exploding them slightly from the rest of the pie.

FIGURE 14-30 Supplier Analysis Report

VENDOR

Morgan The Roadster
Attribute Acme Motors Supply Norton Co. Factory

Yrs in
Business 11/2 4 9 3

Terms of Trade 2/10, n/30 offers 40% off retail, 2/10, n/30, Wholesale price
quantity no quantity offers quantity list, no quantity
discounts discounts discounts discounts

Price Structure Competitive Lowest-priced Competitive
supplier

Lead Time 5–7 days 7–10 days 7–10 days for 3 days
most Items guaranteed

Rush Service 1 day delivery at None None Overnight—2%
3% charge charge

Delivery Reliability Good Good Poor Good

60893_14_Ch14_p659-p722.indd Sec1:707 11/1/07 11:38:41 PM

708 Chapter 14 Construct, Deliver, and Maintain Systems Project

FIGURE 14-31 Matrix Report Showing Vendors (Columns)
and Inventory (Rows) Provided

Inventory
Item
Supplied

Acme
Motors

Morgan
Supply Norton Co.

The Roadster
Factory

109873 k

1098745

109873 q

1098746

7893279

8237419

9495581

X

X

X

X

X

X

X

X

X X

X

X

X

X

X
X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Vendor

FIGURE 14-32 Line Graph Showing Fluctuations in Sales Over Time at One-Month Intervals

J

6

5

4

3

2

1

J F M A M J J A S O N D
Time—Months

S
al

es
 $

 M
ill

io
ns

=Projected Sales

=Actual Sales

60893_14_Ch14_p659-p722.indd Sec1:708

Part IV Systems Development Activities 709

FIGURE 14-33 Scatter Graph Superimposed on Line Graph

January February March April
Time—Months

5

4

3

2

1

A

B

S
al

es
 U

ni
ts

 (1
00

0s
)

FIGURE 14-35 Horizontal Bar Graph Comparing Production of Multiple Plants

Production for January 2001 (Thousands of Units)

4

3

2

1

1 2 3 4 5 6 7 8

Production
Sites

FIGURE 14-34 Bar Graph Showing Actual Computer Usage to Budgeted Usage —Shows CPU Hours per Month

January February March April
Time—Months

April May June

500

400

300

200

100

Budget Actual

CPU
Hours

60893_14_Ch14_p659-p722.indd Sec1:709 11/1/07 11:38:41 PM

710 Chapter 14 Construct, Deliver, and Maintain Systems Project

To maintain the visual power of the message, however, the designer should attempt to restrict the number
of segments. Too many pie wedges make differentiation difficult and complicate the chart.

Layer Chart. A layer chart also shows proportional relationships but allows the addition of another dimen-
sion, such as time or condition. Figure 14-37 illustrates this by showing the change in the proportion of
individual item costs to total manufacturing cost under different technology bases.

Colors
Colors can greatly enhance the usefulness of a report. Choosing colors that are widely spaced on the color
spectrum—such as red, green, and blue—provides for the greatest visual discrimination. This approach can be
used to present data that are being compared or contrasted within a report. The level of color intensity can be used
to emphasize material items or to de-emphasize normal (or less important) data. For example, the variance report
in Figure 14-38 shows budgeted amounts, actual amounts, and the variance from budget for each line item.

FIGURE 14-36 Pie Chart for Manufacturing Costs

Engineering
Technology

Inventory

Labor

Other

EngineeringLabor

Direct
Materials

Technology

Inventory
Other

Direct
Materials

Overhead

Overhead

Traditional Manufacturing
Cost Structure

Computer-Integrated
Manufacturing (CIM) Cost
Structure

FIGURE 14-37 Layer Chart of Cost Proportion Changes Under Different Technology Bases

Other
Engineering
Technology

Inventory
Carrying

Costs

Materials

Direct
Labor

Traditional Islands of
Technology

JIT CIM

60893_14_Ch14_p659-p722.indd Sec1:710 11/1/07 11:38:42 PM

Part IV Systems Development Activities 711

High-intensity color is used here to draw attention to line items with a material variance (for example,
a variance greater than 10 percent). Line items whose variance is under this materiality threshold are
deemed under control and are deemphasized by the use of low-intensity color.

FIGURE 14-38 Variance Report Using Intensity to Highlight
Material Variances

Sports Car Factory
Cost Variance Report for Production Dept. 6

Date 11/20/07

CVAR 1

Item Budget Actual
(Over) Under
Budget

**
Direct labor
Direct materials

Job setup
Supplies
Scheduled
maintenance

36,000

141,600

4,000

122,000

2,200

1,200

36,800

3,600
2,330

1,200

<800>

400
<130>

0

<19,600>

K e y T e r m s

attributes (667)
backbone systems (692)
cohesion (680)
cold turkey cutover (688)
computer-aided software engineering (CASE) (663)
conceptual user views (670)
construct (664)
coupling (679)
cutover (688)
data dictionary (682)
data modeling (670)
database conversion (687)
design phase (669)
detailed design report (682)
disseminating (698)
documentation (685)
electronic input techniques (675)
embedded instructions (675)
event-driven languages (682)
Gantt chart (664)
gathering (698)
group memory (698)

hard copy (674)
inheritance (668)
instance (668)
intelligent forms (676)
knowledge management (698)
methods (667)
object class (668)
object-oriented design (667)
object-oriented programming (OOP) language (683)
objects (667)
online documentation (686)
operations control reports (672)
organizing (698)
parallel operation cutover (688)
PERT chart (663)
phased cutover (688)
procedural language (682)
prototyping (662)
pseudocode (681)
quality assurance group (681)
refining (698)
request for proposal (RFP) (694)

60893_14_Ch14_p659-p722.indd Sec1:711 11/1/07 11:38:42 PM

712 Chapter 14 Construct, Deliver, and Maintain Systems Project

run manual (685)
structure diagram (679)
structured design (664)
systems design (670)
third-generation languages (682)

turnkey systems (691)
user handbook (686)
walk-through (681)
wall of code (669)
zones (675)

R e v i e w Q u e s t i o n s
 1. How does a prototype differ from the final

product? Why discard the prototype? What
role does the end user play in prototyping?

 2. What functions do CASE tools serve?
 3. Distinguish between upper and lower CASE

tools.
 4. What is a central repository in a CASE

system?
 5. How can program code be reused?
 6. What is a data flow diagram? What are the

different levels from most general to most
detailed? Draw the common symbols used.

 7. What is the relationship between an elemen-
tary-level DFD and a structure diagram?
Which must be prepared first?

 8. Is pseudocode programming language-specific?
How about the coding model?

 9. What is the difference between source code
and machine code? Why is it preferable to have
the CASE tools convert the structure diagrams
into machine code rather than source code?

10. What is the iceberg effect? How can CASE
tools help to minimize this phenomenon?

11. Distinguish between reverse engineering and
reengineering.

12. Contrast the advantages and disadvantages of
CASE tools. What should determine whether
CASE is used?

13. What is an object, and what are its characteris-
tics in the object-oriented approach? Give two
examples.

14. Distinguish between object classes and instances.
15. What is meant by inheritance? Give an example.
16. Why is the object-oriented approach particu-

larly suited to ERP system design?

17. What are the four factors that have stimulated
the growth of commercial software?

18. Distinguish between turnkey and backbone
systems. Which is more flexible?

19. What are the four steps involved in choosing a
package?

20. What is an RFP?
21. Discuss the relative merits of in-house programs

versus commercially developed software.
22. List, in sequential order, the system compo-

nents that are designed in the detailed design
phase.

23. What is data modeling? What is its primary
tool?

24. What are the three basic symbols in an ER
diagram?

25. Distinguish between primary and foreign keys.
26. What is a data dictionary?
27. What document is used to determine which

tables of data are necessary?
28. Once the conceptual links between tables have

been determined, how are the physical links
incorporated?

29. What attributes should output views possess?
30. Why is the quality of the paper a major con-

sideration in the design of a hard-copy input?
31. What are the two classes of design input

views?
32. What are zones?
33. In what form should embedded instructions be

written—active or passive voice? Why?
34. What are the relative merits of input from

source documents and direct input?
35. What is pseudocode? Are end users or systems

designers involved in this process?

60893_14_Ch14_p659-p722.indd Sec1:712 11/1/07 11:38:43 PM

Part IV Systems Development Activities 713

36. What are the controls designated in the sys-
tems controls stage?

37. Typically, which is more difficult to detect and
more costly to fix—a design flaw in the pro-
cesses or a programming error?

38. Who is included in the quality assurance
group? What are their tasks? What documents
do they need to perform their tasks?

39. Which activities during the systems implemen-
tation phase have the greatest implications for
accountants and auditors?

40. Which chart, a PERT or a Gantt, shows the
project status at a glance for a given point in
time? Which method illustrates the critical
path at a glance?

41. Discuss the relative merits and drawbacks to
3GL. How might changing technology affect
some of these issues in the future?

42. What is a hybrid language?
43. What are the advantages to the modular pro-

gramming approach?
44. Why should test data be saved after it has been

used?
45. Explain the importance of documentation by

the systems programmers.
46. What documents do accountants and auditors

need for the new system that other stakehold-
ers typically do not?

47. What very important precautions must be
taken during the data conversion procedures?

D i s c u s s i o n Q u e s t i o n s

 1. Data flow diagrams are often described as
exploding from one level to the next. What is
meant by exploding? Also, data flow diagrams
must reconcile from the general level to the
next level of detail. What is meant by recon-
cile? How do you think CASE tools help in
this procedure?

 2. What issues are accountants concerned with
when determining their preference for CASE
tools that convert structure diagrams into
machine code or source code? What are the
costs associated with each?

 3. What documentation techniques are used in
the structured design approach to conceptual
design? What is the purpose of each of these
documentation techniques, and how do they
vary from each other? How much detail is
provided?

 4. Compare and contrast the structured design
approach and the object-oriented design
approach. Which do you feel is most benefi-
cial? Why?

 5. If a firm decides early to go with a special-
purpose system, such as SAP, based upon the
recommendations of the external audit firm,
should the SDLC be bypassed?

 6. Explain how benchmarking works. Should this
be conducted on the vendor’s computer or the
customer’s computer? What about technical
presentations by the vendor? Why?

 7. Discuss the importance of the weights assigned
to factors in the final selection process. What
method might you suggest be used to investi-
gate the appropriateness of the weights?

 8. Who should select the contact user group—the
vendor or the prospective user? Why?

 9. What processes should be used to develop use-
ful and meaningful output? Who should be
involved in the development process?

10. Are input requirements or output requirements
examined to determine the attributes of tables?
Should all of these attributes physically be in
the data file? Why or why not?

11. Are direct input systems (that is, point-of-sale
using bar codes) error free? Why or why not?

12. Why is it necessary to decompose the DFD
to a level of high detail before preparing the
structure diagram? How do you know when
to stop this process?

13. A good structure diagram should be loosely
coupled yet strongly cohesive. How can you
achieve both characteristics simultaneously?

60893_14_Ch14_p659-p722.indd Sec1:713 11/1/07 11:38:43 PM

714 Chapter 14 Construct, Deliver, and Maintain Systems Project

What implications do these characteristics have
on error-prone problems during maintenance?

14. Why bother with pseudocode? Why not spend
the time developing actual source code?

15. During a test data procedure, why should the
developers bother testing bad data?

16. During implementation, if the system is behind
schedule and if each program module is tested
and no problems are found, is it necessary
to test all modules in conjunction with one
another? Why or why not?

17. Run manuals for computer operators are simi-
lar in theory to the checklists that airplane
pilots use for takeoffs and landings. Explain
why these are important.

18. How might the decision to use CASE tools
affect the choice of a programming language?

19. What are the three implementation (cutover)
methods? Which appears to be the most costly
up front? Which could very likely end up being
the most costly in the long run?

20. Who conducts the post-implementation
review? When should it be conducted? If an
outside consulting firm were hired to design
and implement the new system, or a canned
software package were purchased, would a
post-implementation review still be useful?

21. Discuss the importance of involving accoun-
tants in the detailed design and implementa-
tion phases. What tasks should they perform?

M u l t i p l e - C h o i c e Q u e s t i o n s

 1. Which of the following is the correct sequence
of activities in the systems development life
cycle?

 a. Design, analysis, implementation, and
operation.

 b. Design, implementation, analysis, and
operation.

 c. Analysis, design, implementation, and
operation.

 d. Programming, analysis, implementation,
and operation.

 2. Which of the following is NOT an output
attribute?

 a. relevance
 b. exception orientation
 c. zones
 d. accuracy
 3. Which of the following is NOT a principal

feature of a PERT chart?
 a. starting and ending dates
 b. events
 c. paths
 d. activities
 4. Internal auditors would most appropriately

perform which of the following activities dur-
ing a review of systems development activity?

 a. Serve on the MIS steering committee that
determines what new systems are to be
developed.

 b. Review the methodology used to moni-
tor and control the system development
function.

 c. Recommend specific automated procedures
to be incorporated into new systems that
will provide reasonable assurance that all
data submitted to an application are con-
verted to machine-readable form.

 d. Recommend specific operational procedures
that will ensure that all data submitted
for processing are converted to machine-
readable form.

 5. Which of the following is the least risky strat-
egy for converting from a manual to a com-
puterized system?

 a. file conversion
 b. parallel conversion
 c. pilot conversion
 d. big bang conversion
 e. direct conversion
 6. At which point are errors are most costly to

correct?
 a. programming
 b. conceptual design

60893_14_Ch14_p659-p722.indd Sec1:714 11/1/07 11:38:43 PM

Part IV Systems Development Activities 715

 c. analysis
 d. detailed design
 e. implementation
 7. User acceptance testing is more important in

an object-oriented development process than
in a traditional environment because of the
implications of the

 a. absence of traditional design documents.
 b. lack of a tracking system for changes.
 c. potential for continuous monitoring.
 d. inheritance of properties in hierarchies.
 8. Which of the following sets of application

characteristics of an accounting application
might influence the selection of data entry
devices and media for a computerized account-
ing system?

 a. Timing of feedback needs relative to input,
need for documentation of an activity, and
the necessity for reliability and accuracy.

 b. Cost considerations, volume of input, com-
plexity of activity, and liquidity of assets
involved.

 c. Need for documentation, necessity for accu-
racy and reliability, volume of output, and
cost considerations.

 d. Relevancy of data, volume of input, cost
considerations, volume of output, and tim-
ing of feedback needs relative to input.

 e. Type of file used, reliability of manufac-
turer’s service, volume of output, and cost
considerations.

 9. What is the name given to the systems devel-
opment approach used to quickly produce a

model of user interfaces, user interactions with
the system, and process logic?

 a. neural networking
 b. prototyping
 c. reengineering
 d. application generation
10. The PERT is combined with cost data to pro-

duce a PERT cost analysis to
 a. calculate the total project cost inclusive of

the additional slack time.
 b. evaluate and optimize trade-offs between

time of an event’s completion and its cost
to complete.

 c. implement computer-integrated manufac-
turing concepts.

 d. avoid the problem of time variance
analysis.

 e. calculate expected activity times.
11. Which of the following is NOT part of the sys-

tems implementation process?
 a. converting databases
 b. documentation
 c. systems design
 d. testing and correction
12. What is the critical path in the PERT method

for network analysis?
 a. shortest path through the network
 b. longest path through the network
 c. path with the most slack
 d. path with the most variability in estimated

times
 e. least-cost path

P r o b l e m s

 1. CASE Tools
Reeve Lumber Company has a small informa-
tion systems department consisting of five peo-
ple. A backlog of approximately 15 months
exists for requests for new systems applica-
tions to even be considered. Both information
users and systems personnel are unhappy with
this state of affairs. The users feel that the sys-
tems department is not responsive enough to

their needs, while the systems personnel feel
overworked, frustrated, and unappreciated.

Janet Hubert, the manager of the sys-
tems department, has decided that she needs
to take a proactive measure. She is request-
ing the funds to purchase a CASE system
for approximately $75,000 that takes about
two months to install and train workers
how to use it. The president of the company,

60893_14_Ch14_p659-p722.indd Sec1:715 11/1/07 11:38:43 PM

716 Chapter 14 Construct, Deliver, and Maintain Systems Project

Mike Cassidy, initially responded by ques-
tioning the wisdom of taking the systems per-
sonnel away from their duties when they are
backlogged so they can learn a system. Prepare
a memo from Hubert to Cassidy. In the memo,
outline the expected benefits of purchasing and
using a CASE system and address Cassidy’s
concern regarding the two-month training and
implementation period.

2. Data Flow Diagrams
Sawicki Music Supply is a mail-order business
that accepts merchandise orders by telephone
and mail. All payments must be prepaid with
a major credit card. Once an order is received,
either the item is found in inventory and
shipped immediately, the item is not found in
inventory and is ordered from the manufac-
turer, or a notice is sent to the customer indi-
cating that the item is no longer stocked.

Required:
Prepare a context-, intermediate-, and ele-
mentary-level data flow diagram for Sawicki
Music Supply. For the elementary-level dia-
gram, explode the inventory function.

3. Data Flow Diagrams
Examine the context and intermediate (Level 1)
data flow diagrams in the next column and
indicate what is incorrect about them.

 4. Design Input View
During the system design phase of the SDLC,
input interfaces or input views must be
sketched out so programmers can specify the
necessary elements when they program the
user interfaces for the system. Figure 14-12
presents an interface for a Reorder Report.
Sketch a similar interface that could be used
to program a sales invoice interface. Include
areas for a document heading, customer infor-
mation, shipping information, sales employee
information, and items sold.

5. Systems Design
Robin Alper, a manager of the credit collections
department for ACME Building Supplies, is
extremely unhappy with a new system that was
installed three months ago. Her complaint is

that the data flows from the billing and accounts
receivable departments are not occurring in
the manner originally requested. Further, the
updates to the database files are not occurring as
frequently as she had envisioned. Thus, the hope
that the new system would provide more current
and timely information has not materialized. She
claims that the systems analysts spent three days
interviewing her and other workers. During that
time, she and the other workers thought they had
clearly conveyed their needs. She feels as if their
needs were ignored and their time was wasted.

Required:
What went wrong during the systems design
process? What suggestions would you make
for future projects?

Context-Level Diagram

Customer Order

Out-of-Stock Notice

Disapproved Notice

Goods and Invoice

ABC’s
Order

Processing

Customer
1

Stock
Check

Inventory
File

Customer

Customer Order Number of

3
Credit
Check

4
Prepare
Invoice

5
Ship

Goods

Customer
File

Credit Status

Open Invoice
File

Invoice Data

2
Out-of-
Stock
Notice

In-Stock Order

Approved Order

Invoice

Out-of-Stock
Notice

Goods and Invoice

Level 1 Diagram

Items in Stock

Problem 3:
Data Flow Diagrams

60893_14_Ch14_p659-p722.indd Sec1:716 11/1/07 11:38:43 PM

Part IV Systems Development Activities 717

6. Attributes and Operations
Prepare a list of attributes and operations for
the following items:
a. general ledger
b. accounts payable ledger
c. accounts receivable ledger
d. fixed assets ledger
e. inventory ledger

7. Commercial Software
Robert Hamilton was hired six months ago as
the controller of a small oil and gas explora-
tion and development company, Gusher, Inc.,
headquartered in Beaumont, Texas. Before
working at Gusher, Hamilton was the con-
troller of a larger petroleum company, Eureka
Oil Company, based in Dallas.

The joint interest billing and fixed asset
accounting systems of Gusher are outdated,
and frequent processing problems and errors
have been occurring. Hamilton immediately
recognized these problems and informed the
president, Mr. Barton, that it was crucial to
install a new system. Barton concurred and
met with Hamilton and Sally Jeffries, the
information systems senior manager. Barton
instructed Jeffries to make the new system
a top priority. Basically, he told Jeffries to
deliver the system to meet Hamilton’s needs
as soon as possible.

Jeffries left the meeting feeling over-
whelmed because the IS department is cur-
rently working on two other very big projects,
one for the production department and the
other for the geological department. The next
day, Hamilton sent a memo to Jeffries indicat-
ing the name of a system he had 100 percent
confidence in—Amarillo Software—and he
also indicated that he would very much like
this system to be purchased as soon as pos-
sible. He stated that the system had been used
with much success during the past four years
in his previous job.

When commercial software is purchased,
Jeffries typically sends out requests for pro-
posals to at least six different vendors after
conducting a careful analysis of the needed
requirements. However, due to the air of

urgency demonstrated in the meeting with
the president and the overworked systems
staff, she decided to go along with Hamilton’s
wishes and sent only one RFP, which went
to Amarillo Software. Amarillo promptly
returned the completed questionnaire. The
purchase price ($75,000) was within the
budgeted amount. Jeffries contacted the four
references provided and was satisfied with
their comments. Further, she felt comfortable
because the system was for Hamilton, and he
had used the system for four years.

The plan was to install the system during
the month of July and try it for the August
transaction cycle. Problems were encountered,
however, during the installation phase. The
system processed extremely slowly on Gush-
er’s hardware platform. When Jeffries asked
Hamilton how the problem had been dealt
with at Eureka, he replied that he did not
remember having such a problem. He called
the systems manager from Eureka and discov-
ered that Eureka has a much more powerful
mainframe than Gusher. Further investigation
revealed that Gusher has more applications
running on its mainframe than Eureka does,
because Eureka uses a two-mainframe distrib-
uted processing platform.

Further, the data transfer did not go
smoothly. A few data elements being stored
in the system were not available as an option
in the Amarillo system. Jeffries found that the
staff at Amarillo was very friendly when she
called, but they could not always identify the
problem over the phone. They needed to come
out to the site and investigate. Hamilton was
surprised at the delays between requesting an
Amarillo consultant to come out and the time
in which he or she actually arrived. Amarillo
explained that it had to fly a staff member
from Dallas to Beaumont for each trip.

The system finally began to work some-
what smoothly in January, after a grueling
fiscal year-end close in October. Hamilton’s
staff views the project as an unnecessary incon-
venience. At one point, two staff accountants
threatened to quit. The extra consulting fees
amounted to $35,000. Further, the systems
department at Gusher spent 500 more hours

60893_14_Ch14_p659-p722.indd Sec1:717 11/1/07 11:38:44 PM

718 Chapter 14 Construct, Deliver, and Maintain Systems Project

during the implementation process than it
had expected. These additional hours caused
other projects to fall behind schedule.

Required:
Discuss what could have been done differ-
ently during the design phase. Why were most
of the problems encountered? How might a
detailed feasibility study have helped?

8. Data Flow Diagram
The detailed data flow diagram in Figure 14-
16 decomposes the DFD for the expenditure
cycle in Figure 14-15. Further decompose the
process numbered 1.4.4, Receive Invoice, in
detail.

9. PERT Chart
The Peabody Coal Corporation recently com-
pleted the final feasibility report for a new
general ledger accounting system. It has hired
a consulting firm to program and install the
new system. The consulting firm is charging
$350,000 for the remaining tasks to be per-
formed. These tasks are to be performed over
the next 10 months as detailed in the Gantt
chart in the next column. The consulting firm
is extremely concerned with the project stay-
ing on schedule because it is receiving a flat
fee. The release of the final payment is con-
tingent upon the system performing as stated
in the contract and upon Peabody receiving
appropriate documentation of the system.

Required:
a. Prepare a PERT diagram and indicate the

critical path.
b. What happens to the time frame of the

implementation of the project if the man-
ufacturer is four weeks late shipping the
hardware?

c. What happens if the data conversion does
not go smoothly and takes an additional
three weeks?

d. Who should conduct the post-implementa-
tion review? What activities should be con-
ducted during this review? Do you think
enough time has been allotted for this
activity?

10. PERT and Gantt Charts
The lottery commission of a state with about
$500 million a year in revenue has looked
to modern technology for increasing lottery
sales. The strategy is to place self-service sales
machines around the state. Customers simply
fill out the bubbles on the form and insert
the form into the computer. If they wish,
they may enter their numbers directly in the
computer and skip the form altogether. The
machine accepts cash and automatic teller
machine cards. The lottery commission is very
excited about this project because it thinks it
could boost lottery ticket sales by as much as
30 percent.

The systems department has finished the
final feasibility report and has determined
the following estimates for implementing
the system. It plans on purchasing a larger,
more powerful mainframe computer to han-
dle the processing of the transactions. The
manufacturer has promised a delivery date

Implementation Schedule

Months

Database Design

Data Conversion

Documentation

Site Preparation

Order Hardware & OS

Install Hardware

Detailed Design

Programming

Test Programs

Test System

Select Personnel

Train Personnel

Parallel Operation

Post-Implementation Review

Release Final Payment

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Budgeted Time

Problem 9:
Gantt Chart

60893_14_Ch14_p659-p722.indd Sec1:718 11/1/07 11:38:44 PM

Part IV Systems Development Activities 719

of three months from the time the order is
placed. The lottery sales machines must be
special ordered and require a lead time of
five months. The plan is to initially order 15
machines and test them for 12 weeks. If all
goes well, the lottery commission will order
a total of 500 machines, with 20 delivered
and installed each month. This order will not
be placed until the results of the pilot test
have been analyzed.

The writing of the programs is expected
to take six weeks. The testing of the pro-
grams on the mainframe is expected to take
four weeks, with an additional three weeks
once the sales machines have been received.
The state gaming commission is expected to
test for another two weeks. The design of the
databases is expected to take only two weeks.
Not much data transfer is expected to be nec-
essary, so only three weeks is budgeted for
this task.

An estimated 20 employees need to be
hired and trained to install and maintain
these machines around the state. The hiring
process is expected to take six weeks, and the
training should take an additional six weeks.
The documentation should take about three
months and should be completed before the
training of the new employees. As soon as
the gaming commission signs off on the pro-
grams, the 15 machines are to be installed
at test sites around the state. Four weeks
are allotted for this installation procedure.
A one-week testing period is planned, with
commission employees going to the sites and
using the machines. An additional week is
planned to review the results of these tests.
The pilot test then begins and runs for eight
weeks. The data will be analyzed for four
weeks after the pilot test. The final order
for the additional machines will be placed
after the data analysis is conducted and the
demand for the number of machines is more
accurately determined.

Required:
a. Prepare a PERT chart for the above pro-

cess. Identify the critical path.
b. Prepare a Gantt chart for the above process.

11. Accountants understand their jobs very
well. Programmers also understand their
jobs. Unfortunately, accountants are rarely
programmers and programmers are rarely
accountants. While an accountant does not
need to program, the accountant must be able
to communicate his requirement to the pro-
grammer, an individual who may not under-
stand the intricate needs of the accountants.
To bridge this knowledge gap, the accoun-
tant may be called on to produce pseudo-
code—a set of detailed instructions written
in English without syntax rules. Suppose you
need a programmer to prepare code that will
read sales information from an input screen;
compute extensions for items sold; com-
pute a total of these extensions; and update
inventory balances, the sales ledger account,
and accounts receivable as well as any sub-
sidiary accounts. Prepare pseudocode for the
programmer.

12. CMA 786 5-Y6

 PERT Chart
Silver Aviation assembles small aircraft for
commercial use. The majority of Silver’s busi-
ness is with small freight airlines serving areas
where the airport does not accommodate
larger planes. The remainder of Silver’s cus-
tomers are commuter airlines and individu-
als who use planes in their businesses. Silver
recently expanded into Central and South
America and expects to double its sales over
the next three years.

To schedule work and keep track of all
projects, Silver uses the PERT. The PERT dia-
gram for the construction of a single cargo
plane is shown on the following page. The
PERT diagram shows that there are four
alternative paths, with the critical path being
ABGEFJK.

Bob Peterson, president of Coastal Air-
lines, has recently placed an order with Silver
Aviation for five cargo planes. At the time of
contract negotiations, Peterson agreed to a
delivery time of 13 weeks (five working days
per week) for the first plane, with the balance
of the planes being delivered at the rate of one
every four weeks. Because of problems with

60893_14_Ch14_p659-p722.indd Sec1:719 11/1/07 11:38:44 PM

720 Chapter 14 Construct, Deliver, and Maintain Systems Project

HJ by 1 day
FJ by 1 day
GH by 2 days
CD by 2 days
EF by 1 day
DE by 2 days
BG by 1 day

Activity
Crashed

$ 400
400
500
700
800
800

1,000

Additional
Cost

per Day

$65,100
65,500
65,900
66,900
68,300
69,100
70,700
71,700

Total
Direct
Cost

65 days
64
63
61
59
58
56
55

Completion
Time

AB
BC
CD
DE
BE
BG
GE
EF
GH
FJ
HJ
JK

Frame fuselage
Wing placement
Engine mount
Landing gear
Cargo doors
Electrical wiring
Instrument panel
Electrical tests
Exterior shell
Interior finish
Exterior paint
Final testing

Activity

$1,200
1,400

700
800
—

1,000
1,300

800
500
400
400
900

Added Crash
Cost per
Reduced

Day

Expected
Activity Times

20 days
 6
 9
 7
 3
15
 8
11
 9
 8
 6
 3

Regular

16 days
 5
 7
 5
 3
13
 6
10
 7
 7
 5
 2

Crash

Direct Cost

$12,000
3,600
6,600
5,100
1,400
9,000
5,700
6,800
4,200
3,600
3,600
3,500

$65,100

Regular

$16,800
5,000
8,000
6,700
1,400

11,000
8,300
7,600
5,200
4,000
4,000
4,400

$82,400

Crash

Crash Cost Listing

A

H

J KB

G

C

F

Frame
fuselage
20 days

W
ing

place
ment

6 day
s

Electrical
wiring

15 days

Cargo doors
3 days

Engine
mount
9 days

Exterior shell
9 days

Exterior paint

6 daysInstrument panel

8 days

Landing gear

7 days Electrical
tests

11 days

Interior
finish

Final
testing
3 days

D

E 8 days

Vander’s plan
for accelerated

delivery

Problem 12:
PERT Chart

some of the aircraft Coastal is using, Peterson
has contacted Grace Vander, sales manager
for Silver Aviation, to ask about improving the

delivery date of the first cargo plane. Vander
replied that she believed the schedule could
be shortened by as much as 10 working days,

60893_14_Ch14_p659-p722.indd Sec1:720 11/1/07 11:38:45 PM

Part IV Systems Development Activities 721

or two weeks, but the cost of construction
would increase as a result. Peterson said he
would be willing to consider the increased
costs, and they agreed to meet the following
day to review a revised schedule that Vander
would prepare.

Because Silver Aviation has assembled air-
craft on an accelerated basis before, the com-
pany has compiled a list of crash costs for this
purpose. Vander used the data shown in the
Crash Cost Listing table below to develop a
plan to cut ten working days from the sched-
ule at a minimal increase in cost to Coastal
Airlines.

Upon completing her plan, Vander was
pleased that she could report to Peterson that
Silver would be able to cut 10 working days
from the schedule. The associated increase
in cost would be $6,600. Presented below is
Vander’s plan for the accelerated delivery of
the cargo plane starting from the regularly
scheduled days and costs.

Required:
 a. PERT is a form of network analysis.

 1. Explain how the expected regular times
for each activity are derived in using
PERT.

 2. Define the term critical path and ex-
plain why path ABGEFJK is the critical
path in this situation.

 b. Evaluate the accelerated delivery schedule
that Grace Vander prepared.

 1. Explain why Vander’s plan as pre-
sented is unsatisfactory.

 2. Revise the accelerated delivery sched-
ule so that Coastal Airlines will take
delivery of the first plane two weeks
(10 working days) ahead of sched-
ule at the least incremental cost to
Coastal.

 3. Calculate the incremental costs Bob
Peterson will have to pay for this
revised accelerated delivery.

13. Detailed Systems Design
On the next page is an ER diagram for the
expenditure cycle.

Required:
a. List the entity database tables and describe

which entities need representing from an
AIS perspective.

b. For each item identified as relevant to AIS,
prepare a list of database tables along with
primary and embedded foreign keys.

c. Prepare database tables showing attributes
in normalized form.

14. Conceptual Design
Vince Malloy and Katy Smith, both systems
personnel at Shamrock Steelworks, are design-
ing a new expenditure cycle system. Vince has
worked for Shamrock for 12 years and has
been involved in many systems development
projects. Katy recently began working for
Shamrock. She has four years of experience
in systems development with another com-
parably sized organization. Yesterday, Vince
and Katy met to determine their plan for
approaching the conceptual system design.
Below is an excerpt of some dialogue that
occurred in that meeting.

Katy: I really think that the new system can be
designed more efficiently if we use an object-
oriented design approach. Further, future
enhancements and maintenance will be easier
if we use an object approach.

Vince: The method you are suggesting is a
creation of modules. I do not have a prob-
lem with that concept in general. I just prefer
using a top-down approach to design the sys-
tem. We have been using that system for the
past 12 years, and it has worked out OK.

Katy: Sure, your systems have worked for
you, but perhaps they can be developed more
efficiently, not to mention maintaining them.
Further, we have approximately a two-year
backlog of projects. Changing to a more effi-
cient design system may help us to reduce that
wait.

Vince: We may not end up with the system
we want if we do not consider the big picture.
I am afraid if we get too tied to using existing
modules for future projects, we may design
suboptimal systems that will require more

60893_14_Ch14_p659-p722.indd Sec1:721 11/1/07 11:38:45 PM

722 Chapter 14 Construct, Deliver, and Maintain Systems Project

maintenance and have shorter lives in the
long run. What good will the more efficient
system do us then?

Required:
Prepare Katy’s response and develop a strat-
egy for systems design that will address both
of their concerns.

Inventory
Control
Clerk

Purchase
Order

Purchase
Requisition

Updates

Supplies

Selects

Sent to

Sent to

Prepares

Prepares

PreparesSelects

Inventory

Inventory
Records

Receiving
Report

Purchasing
Agent

Receiving
Clerk

Vendor
Records

Vendor

Receives

Receives

1 1 1 1

1 11

1

11

1 1

1

1111

M

M

M
M

1

Problem 13:
Detailed Systems Design

Systems Development Cases
Several systems development cases that draw upon the material in this and the next chapter are available
online at http://academic.cengage.com

60893_14_Ch14_p659-p722.indd Sec1:722 11/1/07 11:38:45 PM

